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Abstract 10 

 11 

This review introduces a new approach of completely marine based 12 

bioethanol production by analyzing and evaluating the recent trends in 13 

bioethanol fermentations using algae, marine microorganisms and the 14 

replacement of freshwater with seawater. Both macroalgae and microalgae 15 

have been successfully used for bioethanol production. Marine yeasts showed 16 

excellent tolerance to salt and inhibitors, and fit for seawater fermentation. 17 

The combination of marine biomass, marine microorganism and seawater has 18 

a potential for a greener bioethanol production.   19 
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1. Introduction 25 

 26 

Increasing concerns over energy shortages and environmental pollution has 27 

led to a growing focus on the development of renewable energy sources, such 28 

as solar, wind, bioenergy and geothermal energy. When compared with other 29 

renewable energy sources, biofuels especially bioethanol, have several unique 30 

advantages, such as its use as a liquid fuel, which can be directly used in 31 

existing vehicle engines, it can be distributed via the existing fossil fuel 32 

system and encourages rural economy. The increasing demand for bioethanol 33 

has led to the excessive usage of food material and arable land for production. 34 

This has resulted in food price rises and has restricted the growth of the 35 

bioethanol industry.  36 

 37 

A promising alternative choice of bioethanol production is the development 38 

of a marine resource based bioethanol production process, as shown in Figure 39 

1. Marine biomass, specifically microalgae and macroalgae, are fast growing 40 

photosynthetic species which contain little or no lignin content, and require 41 

no arable land and minimum nutrients for their cultivation. They are 42 

considered as the 3rd generation of bioethanol feedstock [1]. In the past 43 

decade, there has been an increase in research focus on bioethanol 44 

production from marine biomass. Besides marine biomass, marine-derived 45 

microorganisms have unique properties, such as high osmotic tolerance, 46 

utilization of particular sugars and production of special enzymes [2]; these 47 

properties provide extra benefits for bioethanol production, especially when 48 

using marine biomass. Seawater is an abundant under estimated resource. 49 
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The use of seawater as a substitute for freshwater in bioethanol production 50 

was suggested to reduce the water footprint of bioethanol production. 51 

 52 

This paper reviews the latest progress in bioethanol production using marine 53 

biomass, marine microorganisms and seawater. It also discusses future 54 

trends in marine resources based bioethanol production.  55 

 56 

2 Bioethanol production using marine biomass 57 

 58 

2.1 Macroalgae (seaweed) 59 

Macroalgae can be divided into three types, brown (Phaeophyta), red 60 

(Rhodophyta) and green (Chlorophyta). In order to evaluate the bioethanol 61 

production potential, the composition and carbohydrate profile of various 62 

seaweed species have been determined (Table 1). Although the results did 63 

not always concur, in general, seaweed contains 23.8-67% carbohydrate, 4.8-64 

23% protein, 0.53-4.8% lipid and 14-42% ash content (w/w dry weight basis, 65 

(dw), based on 90% of the values listed in Table 1). When comparing sugar 66 

composition, brown seaweed typically contains alginate, mannitol, laminarin, 67 

fucoidin and cellulose; red seaweed typically contains carrageenan, agar, 68 

cellulose and lignin and green seaweed typically contains mannan, ulvan, 69 

starch and cellulose, though there is considerable variation [9]. Similar to 70 

lignocellulosic bioethanol production, pretreatment and saccharification are 71 

required to hydrolyze the seaweed into a fermentable sugar solution. Dilute 72 

acid pretreatment using sulfuric acid and moderately high temperatures 73 

(100-150oC) is a typical pretreatment method for converting seaweed into a 74 
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hydrolysate suitable for conversion into bioethanol [10, 11]. Other 75 

pretreatment methods developed for lignocellulosic bioethanol production 76 

process, such as alkali [12] and microwave [13] pretreatments have also been 77 

successfully applied to seaweed hydrolysis processes. A subsequent 78 

enzymatic saccharification step is normally required after pretreatment. 79 

Using a cocktail of cellulosic enzyme solution, an overall hydrolysis yield over 80 

90% has been achieved [11]. Utilization of seaweed specific enzymes, such as 81 

alginate lysase [14] and laminarinase [15] have also been reported, which 82 

effectively hydrolyzed brown seaweeds.  83 

 84 

Subsequent to pre-treatment and saccharification, seaweed hydrolysates 85 

have been evaluated in various fermentation models for bioethanol 86 

production. Figure 2 plots bioethanol concentration and overall bioethanol 87 

yield, the two crucial economic indicators in seaweed to bioethanol 88 

fermentations. In general, relatively low bioethanol concentration of less than 89 

30 g/L was observed (Figure 2). When the hydrolysate was concentrated, e.g. 90 

by rotary evaporation, the initial sugar content in the hydrolysate was 91 

enhanced and a bioethanol concentration of 65 g/L has been reported [16]. 92 

Bioethanol yields of 28% (w/w) have been reported, which is decent 93 

comparing to the theoretical maximum overall bioethanol yield of 38% (w/w) 94 

(Figure 2).  95 

Saccharomyces cerevisiae is the most commonly used microorganism due to 96 

its high glucose fermentation capacity. However, existing S. cerevisiae strains 97 

are inefficient in fermenting algae specific sugar monomers, such as mannitol 98 

and laminaran. Therefore, non-S. cerevisiae strains, such as Pichia angophorae 99 
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[17] and Defluviitalea phaphyphila [18] have been investigated to promote 100 

conversion of mannitol, laminaran and alginate contained in seaweed 101 

hydrolysates. Another promising strategy is the construction of macroalgae 102 

sugar utilization pathways in high ethanol producing strains. Enquist-103 

Newman et al., (2013) constructed an alginate transportation and metabolism 104 

system in S. cerevisiae, which efficiently converted 4-deoxy-L-erythro-5-105 

hexoseulose uronate (DEHU) and mannitol into bioethanol [19]. In a novel 106 

process, a genetically modified Escherichia coli strain (E coli KO11) was 107 

developed, which hydrolyzed, transported and converted alginate into 108 

bioethanol simultaneously [20]. A bioethanol concentration of 4.7% (v/v) was 109 

obtained with a yield of 0.281 g bioethanol per g dry weight macroalgae.  110 

 111 

2.2 Microalgae 112 

 113 

Microalgae have attracted great attention for biodiesel production due to 114 

their fast growing character and their high lipid content in certain species, 115 

such as Chlorella sp. [21]. Apart from lipid, some microalgae species, e.g. 116 

Synechococcus sp. accumulated 60% carbohydrate content in favorable 117 

culture conditions [22]. In a recent paper, a microalgae, designated SP2-3 118 

containing 70% (w/w, dw) carbohydrate content was identified, indicating it 119 

could be a promising marine feedstock for bioethanol production [23]. When 120 

compared with macroalgae or terrestrial biomass, microalgal cell wall is 121 

relatively easy to break down following a lysozyme, dilute acid or a 122 

combination of both pre-treatment [23]. Early research on the hydrolysis of a 123 

green microalgae Chlamydonoas reinhardtii with 3% (w/w) H2SO4 at 110oC 124 
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for 30 minutes led to a hydrolysate with a glucose concentration of 28.5 g/L 125 

[24]. Subsequent fermentation of the hydrolysates by S. cerevisiae resulted in 126 

a bioethanol production of 14.6 g/L, which corresponds to 0.292 g bioethanol 127 

per g biomass (dw) [24]. Since then, various microalgae, such as 128 

Cyanobacterium synechococcus sp. [22] Chlorella sp. [25], have been explored 129 

for bioethanol production. These results have been summarized in Table 2 130 

and recent articles [1, 23]. Normally, a microalgae hydrolysate contains 131 

around 10-30 g/L sugars, and 3.6-14.6 g/L bioethanol was obtained with a 132 

typical bioethanol to biomass yield of 0.2-0.3 (w/w, dw). When the 133 

hydrolysate was concentrated, the sugar content can reach 137 g/L and 134 

produce a bioethanol titre of up to 61.2 g/L [23].  135 

 136 

3 Marine microorganisms in bioethanol production 137 

 138 

The majority of microorganisms that are used for bioethanol synthesis have 139 

been isolated from terrestrial environments. Hydrolysates derived from 140 

marine biomass typically contain a different spectrum of sugar monomers 141 

from hydrolysates from terrestrial plants [9] and as a result terrestrial 142 

microorganisms struggle to utilize these sugars efficiently. An alternative 143 

approach other than genetically modifying a microorganism is to screen for 144 

new microorganisms which could utilize sugars present in the marine 145 

biomass-derived hydrolysates. Isolation of marine-derived yeast was first 146 

reported in 1894, since then, hundreds of marine yeasts had been isolated, 147 

and some of these have been successfully used for bioethanol, pharmaceutical 148 

and industrial enzyme production [2, 32]. Recently, Zaky et al., (2014) 149 
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compared various marine yeast isolation methods and developed an efficient 150 

three-step protocol for marine yeast isolation [2]. Applying this method to 14 151 

geographically different marine samples, over 100 marine yeasts were 152 

isolated, of which 17 displayed efficient sugar utilization strains and were 153 

subsequently identified [33]. Fermentations using S. cerevisiae AZ65, one of 154 

the isolates in the above study produced 97.41 g/L bioethanol from a glucose 155 

based medium in 15 L fermenters [34]. Obara et al. (2012) reported 156 

fermentations of a concentrated paper shredder scrap hydrolysate using 157 

marine-derived S. cerevisiae which achieved 122.5 g/L of bioethanol [35]. 158 

When this strain was used to ferment a mixture of seaweed hydrolysate 159 

(Undaria pinnatifida) and paper shredder, 87.7 g/L bioethanol was produced 160 

[36]. Besides S. cerevisiae, marine-derived microorganisms, such as Pichia sp., 161 

Candida sp. Yarrowia sp. and Wickerhamomyces sp. have also been 162 

investigated for their suitability for bioethanol production [2].  163 

The utilization of marine microorganisms in marine biomass hydrolysate was 164 

recently explored. Khambhaty et al. (2013) reported fermentations of red 165 

seaweed Kappaphycus sp. hydrolysate which contained 5.5% sugar and 166 

11.25% salt by a marine-derived Candida sp. and 12.3 g/L bioethanol was 167 

observed [37]. A thermophilic marine bacterium Defluviitalea phaphyphila 168 

was isolated, which converted un-hydrolyzed brown seaweed powder (S. 169 

japonica) to bioethanol with a yield of 0.25 g/g seaweed (dw) [18].  170 

 171 

Marine microorganisms have also been used in enzymatic hydrolysis 172 

processes and used as gene donors for the construction of novel bioethanol 173 

producing strains. Trivedi et al., (2015) demonstrated the enzyme solution 174 
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obtained from a marine fungus Cladosporium sphaerospermum hydrolyzed 175 

green seaweed Ulva fasciata [38]. The enzyme solution maintained 74-94% of 176 

its activities in ionic liquid (IL), indicating it could be used together with IL for 177 

biomass hydrolysis. Parab et al., (2017) successfully used an enzyme solution 178 

produced from a marine bacterium Bacillus sp. BT21 for the hydrolysis of red, 179 

green and brown seaweeds (Ahnfeltia plicata, Ulva lactuca and Padina 180 

tetrastromatica) [39]. Sugar yields of 0.23, 0.10 and 0.073 g/g biomass (dw) 181 

respectively were observed. Inulinase genes originated from marine-derived 182 

yeasts Pichia guilliermondii [40] and Candida membranifaciens [41] were 183 

successfully expressed in Saccharomyces sp. W0, respectively. The 184 

transformants Saccharomyces sp. Inu-66 and W14-3-INU-112 both produced 185 

over 12% (v/v) ethanol from Jerusalem artichoke derived inulin solution.  186 

 187 

4 Use seawater in bioethanol fermentation 188 

 189 

Seawater, which represents 97% of world’s total water, is a potentially 190 

important marine resource for bioethanol industry. With the successful 191 

demonstration of using marine biomass and marine yeast for bioethanol 192 

production, the further replacement of freshwater with seawater would lead 193 

to a fully marine based process. The replacement of freshwater by seawater 194 

in bioethanol fermentation using marine yeast S. cerevisiae AZ65 showed no 195 

inhibitory effect. In 15 L batch fermentations using a sugarcane molasses 196 

derived medium prepared in seawater, marine yeast S. cerevisiae AZ65 197 

produced 52.2 g/L of bioethanol after 48 hours of culture (unpublished data).  198 

 199 
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5 Challenges and opportunities  200 

Marine biomass is a promising feedstock for bioethanol production. It is 201 

estimated that macroalgae has the potential of producing 23.4 m3/ha/y 202 

bioethanol, which is 10.6 and 2.5 folds higher than those for corn and sugar 203 

cane, respectively [15]. However, currently marine biomass has an annual 204 

production of only 27 million tons (wet weight) [42], in comparison, sugar 205 

cane production was 1.68 billion tons in 2012 [43]. Unlike major terrestrial 206 

crops, which had been bred and screened for increasing productivity for 207 

thousands of years, marine biomass are under-investigated, especially in 208 

terms of breeding. This indicates that the potential for marine biomass 209 

productivity could be improved dramatically and this development will have 210 

a crucial impact on bioethanol production and growth of the industry. The 211 

near 90% (w/w) water content in both microalgae [21] and macroalgae [44] 212 

is a concern for industrial bioethanol production. A low cost, highly efficient 213 

dewatering technology has yet to be developed. A combination of new strain 214 

discovery, especially marine yeasts isolation, gene discovery and therefore 215 

strain development of novel microorganisms which have the capacity to use 216 

the full range of algae sugars would improve marine bioethanol production 217 

and perspectives. The replacement of freshwater by seawater in bioethanol 218 

industry could reduce the bioethanol production water footprint and possibly 219 

provide freshwater for other sectors, possibly achieving bioethanol 220 

production from sole marine resource. Integrating bioethanol production 221 

with the existing algae industry, CO2 fixation or wastewater treatment would 222 

be an attractive approach [45, 46].  223 

  224 
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The utilization of macroalgae and microalgae for bioethanol production has 225 

been reviewed in this paper. Significant improvement has been achievement 226 

recently both in fermentation process optimisation and strain development. 227 

Marine microorganisms and seawater have been demonstrated to be able to 228 

used in algal biofuel fermentation. The development of an algae-based 229 

biorefinery, extracting or producing value-added chemicals together with 230 

completely marine based bioethanol fermentation would improve the overall 231 

economic feasibility of algal biofuel production [47].  232 

 233 
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Figure 1. Schematic diagram of marine resource based bioethanol production 475 

processes in comparison with the 1st and 2nd generation bioethanol 476 

production processes.  477 

 478 

479 
  480 
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Figure 2 Comparison of bioethanol concentration (g/L) and overall 481 

bioethanol yield (g bioethanol per g dry weigh seaweed) in fermentations 482 

using seaweed hydrolysates [5,6,11]. The theoretical maximum overall 483 

bioethanol yield of 38% (w/w) was calculated based on the carbohydrate 484 

content in seaweed (67% w/w) and bioethanol to sucrose yield of 0.568 g/g.  485 
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Table 1 The carbohydrate, protein, lipid and ash composition of macroalgae, 490 

(dry weight basis, %).   491 

Seaweed sp. Carbohydrate Protein Lipid Ash REF 

 (w/w) (w/w) (w/w) (w/w)  

Brown seaweed 

Alaria esculenta 
 

9.11 1.3 24.56 [3] 

Ascophyllum nodosum 39.5-60.6 4.8–9.8 1.9–4.8 18–24 [4] 

Fucus serratus 26.4 9.6 2.8 18.8 [5] 

Fucus vesiculosus 
 

6.11 3.51 20.92 [3] 

Laminaria digitata 
 

5.31 1.13 24.43 [3] 

Laminaria digitata 21.7 26.8 1.9 24.3 [5] 

Laminaria digitata 46.6 12.9 1 26 [6] 

Laminaria digitata 
 

4.63 0.53 26.5 [4] 

Laminaria hyperborea 
 

5.02 1.42 28.75 [3]  

Laminaria japonica 51 8 1 
 

[1] 

Laminaria sp. 60 12 2 26 [4] 

Macrocystis sp 41.7 17.3 
 

41.1 [4] 

Pelvetia canaliculata 
 

5.72 5.81 21.24 [3] 

Saccharina  40.8–67.0 8.4–14.8 1.3–2.4 14.3 [7] 

Sargassum ilicifolium 32–33 8–9 2 
 

[1] 

Undaria 26.5–42.8 12.0–23.0 1.1–4.5 22.4 [7] 

Undaria pinnitifida 43 24 3-4 
 

[1] 

Green seaweed 

Ulva sp. 
 

13.6 2.7 30.2 [4] 

Ulva lactuca 59 17 3-4 
 

[1] 

Ulva lactuca 
 

8.65 2.62 29.31 [3] 

Ulva lactuca 23.8 16.4 1 21.5 [5] 

Enteromorpha intestinalis 
 

11.33 1.03 55.29 [3] 

Cladophora rupestris 
 

3.42 0.63 77.8 [3] 

Red seaweed 

Chondrus crispus 21.8 19.9 0.48 19 [5] 

Eucheuma cottonii 26 09-10 1 
 

[1] 

Gelidium amansii 66 20 0.2 
 

[1] 

Gracilaria gigas 64.71 12.63 1.31 19.59 [8] 

Gracilaria sp. 
 

11.4 
 

37.7 [4] 

Gracilaria verrucosa 60.81 9.86 0.8 13.85 [8] 

Palmaria palmata 
 

12.26 1.33 42.23 [3] 

Palmaria palmata 39.4 22.9 3.3 25.7 [5] 

Vertebrata lanosa 
 

11.56 1.3 28.78 [3] 
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Table 2 Comparison of bioethanol production using microalgae feedstock.  

Microalgae species Pretreatment Fermentation Bioethanol REF 

 
Method Sugar Strain  Condition 

Titre 
(g/L) 

Yield 
(g/g) 

 Chlamydomonas reinhardtii 
UTEX 90  

3% H2SO4, 110°C, 30 min  0.58 g/g S. cerevisiae 30°C, 24 h  14.6 0.292 
[24] 

Chlamydomonas reinhardtii 
UTEX 90,  

0.005% a-amylase, 90°C, 30 min  N/A S. cerevisiae  30°C, 40 h, 160 rpm  N/A 0.235 
[26] 

Chlorella vulgaris 
240 IU/mg substrate pectinase, 50°C, 200 
rpm, 72 h, 

0.148 g/g S. cerevisiae 30°C, 48 h N/A 0.069 
[25] 

Chlorella vulgaris FSP-E 1% (w/v) H2SO4, 121°C, 20 min, pH 6.0 0.477 g/g Z. mobilis  30°C, 24 h 11.7 0.233 [27] 

Chlorella vulgaris FSP-E 
2% (w/v) cellulase + amylase, 45°C, 200 
rpm, pH 6.0 

0.461 g/g Z. mobilis  30°C, 24 h 4.3 0.214 
[27] 

Chlorococcum humicola 3% (w/v) H2SO4, 160°C, 15 min, pH 7.0 N/A S. cerevisiae 30°C, 50 h, 200 rpm 7.2 0.520 [28] 

Chlorococcum sp. Supercritical CO2 extraction of lipid, 60°C N/A S. cerevisiae 30°C, 60 h, 200 rpm 3.8 0.380 [29] 

Cyanobacterium 
synechococcus sp 

Sonication, lysozyme and a-glucanase N/A S. cerevisiae  34°C, 72 h, 160 rpm 30.0 0.270 
[22] 

Desmodesmus sp. 
10% dry w/v, 2% (v/v) H2SO4, 120°C, 30 
min, followed by lyophilization 

137.2 g/L* S. cerevisiae 28°C, 30 h, 120 rpm 61.2 0.310 
[23] 

Nannochloropsis oculata 
0.75% (w/v) NaOH, room temperature, 10 
min 

1-2.4% 
(dw) 

S. cerevisiae 30°C, 48 h 150 rpm N/A 0.037 
[30] 

Scenedesmus obliquusCNW-N 0.5–5% (w/v) H2SO4, 121°C, 20 min, pH 6.0  Z. mobilis 30°C, 24h N/A 0.213 [31] 

Tetraselmis suecica 
0.75% (w/v) NaOH, room temperature, 10 
min 

3.4-27% 
(dw) 

S. cerevisiae 30°C, 48 h, 150 rpm N/A 0.073 
[30] 

* After concentration by lyophilization. 


