
Computational Intelligence, Volume 59, Number 000, 2010

Inner Entanglements: Narrowing the Search in Classical Planning by Problem

Reformulation

LUKÁŠ CHRPA1,2 , MAURO VALLATI3 AND THOMAS LEO MCCLUSKEY3

1Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

2Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

3School of Computing and Engineering, University of Huddersfield, UK

In the field of Automated Planning, a central research focus is on domain-independent planning engines

which accept planning tasks (domain models and problem descriptions) in a description language such as PDDL,

and return solution plans. Performance of planning engines can be improved by gathering additional knowledge

about specific planning domain models/tasks (such as control rules) which can narrow the search for a solution

plan. Such knowledge is often learnt from training plans, solutions of simple tasks. Using techniques to reformulate

the given planning task to incorporate additional knowledge, while keeping to the same input language, allows

to exploit off-the-shelf planning engines. In this paper we present inner entanglements that are relations between

pairs of operators and predicates which represent exclusivity of predicate achievement or requirement between the

given operators. Inner entanglements can be encoded into a planner’s input language by transforming the original

planning task, so planning engines can exploit them. The contribution of this paper is to provide an in depth analysis

and evaluation of inner entanglements, covering theoretical aspects such as complexity results, and an extensive

empirical study using IPC benchmarks and state-of-the-art planning engines.

Key words: Knowledge Representation, Classical Planning, Machine Learning, Problem Reformulation

iC 2010 The Authors. Journal Compilation iC 2010 Wiley Periodicals, Inc.

INNER ENTANGLEMENTS 1

1. INTRODUCTION

Automated planning is an important research area of Artificial Intelligence (AI)

where an autonomous entity (e.g. a robot) reasons about the way it can act in order to

achieve its goals. AI planning has therefore a great potential for applications where a

certain level of autonomy is required such as in the Deep Space 1 mission (Bernard

et al., 2000). Classical planning is a subarea of AI planning that deals with a static

and fully observable environment and actions have deterministic and instantaneous

effects. Classical planning is, however, intractable (PSPACE-complete) (Bylander,

1994).

In the last few decades, there has been a great deal of activity in the research

community designing planning techniques and planning engines. Since 1998, the

International Planning Competition (IPC)1 is being organised and is increasingly

attracting the attention of the AI planning community. Thanks to the IPC we have

PDDL (Ghallab et al., 1998), that is a widely used language for describing planning

tasks, and a wide range of benchmarks that can be used for measuring planners’

performance. Currently, PDDL is supported by a large number of advanced plan-

ning engines. Along with those planning engines, many novel planning techniques

have been proposed, such as heuristic search (Bonet and Geffner, 1999), translating

planning tasks into SAT (Kautz and Selman, 1992) just to mention a few.

Performance of planning engines can be improved by restricting the search space,

i.e., by introducing pruning techniques that “cut off” branches that are unnecessary

1http://ipc.icaps-conference.org

2 COMPUTATIONAL INTELLIGENCE

or redundant. Commutativity pruning eliminates all but one permutation of com-

mutative actions (can be applied in any order) (Godefroid and Kabanza, 1991).

Symmetry breaking reuses information about one object to its symmetric “twin”

in such a way that “bad” states of one object can be avoided for its symmetric

“twin” (Fox and Long, 1999). Reachability analysis can determine whether the goal

is unreachable from a current state (Bonet and Geffner, 1999).

Another way how performance of planning engines can be improved is by gath-

ering Domain Knowledge (DCK), i.e., additional knowledge about planning tasks

indicating how solution plans would look like. DCK can be expressed, for instance,

in the form of Control Rules (Minton and Carbonell, 1987), Temporal Logic formu-

las (Bacchus and Kabanza, 2000), or Decision Trees (de la Rosa et al., 2011). With

growing interest in extracting DCK automatically, the emphasis was given to exploit-

ing machine learning techniques that can acquire useful DCK, usually, by analysing

“training plans”, which are solutions of simple planning tasks. This motivated the

foundation of the Learning Track in the IPC, which has been organised since 2008.

It should be noted that an approach that learns DCK from relaxed plans (obtained by

solving planning tasks while omitting negative effects of actions) (Yoon et al., 2008)

won the best learner award at IPC 2008. However, such types of knowledge often re-

quire specific planning engines such as TALPlanner (Kvarnström and Doherty, 2000)

in case of control rules. Alternatively, domain knowledge can be directly encoded

into the domain and problem descriptions (usually in PDDL). Such an approach is

planner-independent, so a standard planning engine can straightforwardly exploit it.

The best known planning task reformulation technique, macro-operators (“macros”),

which encapsulate sequences of PDDL operators, can be encoded as normal planning

INNER ENTANGLEMENTS 3

operators, so they can be easily added into domain models (Korf, 1985; Newton

et al., 2007; Chrpa, 2010; McCluskey and Porteous, 1997). Abstracting planning

tasks by their reformulation in order to reveal their hierarchical structures can miti-

gate “accidental complexity” of their domain models2 (Haslum, 2007; Tozicka et al.,

2016).

Beside macros, another type of domain-independent domain knowledge are En-

tanglements (Chrpa and Barták, 2009; Chrpa and McCluskey, 2012), which rep-

resent relations between planning operators and predicates, aiming at eliminating

unpromising alternatives in a planning engine’s search space. Technically speaking,

entanglements are task-specific, i.e., relations described by entanglements hold in at

least one solution plan of a given task. Entanglements usually generalize well, that

is, a set of entanglements hold for a class of planning tasks with the same domain

model.

Outer Entanglements (Chrpa and Barták, 2009) are relations between planning

operators and predicates whose instances are present in the initial state or the goal.

Inner Entanglements (Chrpa and McCluskey, 2012; Chrpa and Vallati, 2013), we fo-

cus on in this paper, are relations of exclusivity of predicate achievement or require-

ment between between pairs of operators. Inner entanglements can be encoded in

planning tasks, effectively re-formulating them, and thus they are planner-independent.

Deciding whether a given inner entanglement holds in a given planning task is

generally intractable (PSPACE-complete) and thus as hard as solving a planning

task. Such a theoretical result indicates practical infeasibility of enumerating entan-

2“accidental complexity of domain models” means that their inefficient encodings decrease performance of planning engines

4 COMPUTATIONAL INTELLIGENCE

glements for a given task prior solving it. Since inner entanglement generalize well

as reported in literature (Chrpa and McCluskey, 2012; Chrpa and Vallati, 2013),

i.e., they are rather domain-specific than task-specific, for extracting them, we have

exploited the “Learning for Planning” paradigm, which identifies domain knowledge

from a set of “training” planning tasks. Therefore, inner entanglements can be learnt

on simple training tasks, which are easy to solve, and then used for more complex

tasks (in the same class) for speeding-up plan generation process. Our initial work on

inner entanglements has been reported in a couple of shorter papers detailing their

discovery, use and effectiveness (Chrpa and McCluskey, 2012; Chrpa and Vallati,

2013). In this paper, we integrate and extend our previous work, with:

• A detailed description of the encodings of inner entanglements, including formal

proofs of their correctness;

• A collected summary of the known complexity results, and trivial cases where

inner entanglements hold;

• Case studies in which we investigate knowledge engineering aspects of (re)using

inner entanglements;

• An analysis of the potential impact of inner entanglements on the planning process;

• An approximation method for extracting entanglements enriched by filtering un-

promising inner entanglements;

• An extensive empirical study of the impact of inner entanglements in the planning

process using all the domains from the 7th IPC’s learning track3, and 7 state-of-

the-art planning engines based on very different principles.

3Learning track benchmarks are more natural, since inner entanglements extraction phase can be understood as a learning

process

INNER ENTANGLEMENTS 5

Although our approximation method for learning inner entanglements does not

theoretically guarantee that the reformulated tasks remain solvable, the main em-

pirical findings from this paper are that the use of inner entanglements improve

the planning process generally through the considered planner and domain model

combinations. Also, in the experimental scenarios we used, the potential for identi-

fication of incorrect inner entanglements stemming from our approximation method

for their extraction, did not explicitly manifest itself in the results. Using the “learn-

ing for planning” paradigm, i.e., learning domain specific knowledge on a small set

of training tasks, has demonstrated its usefulness in the inner entanglements case.

Noticeably, the issue of making some reformulated tasks unsolvable can be alleviated

i) by running the planner on the original task if the reformulated task was unsolved,

ii) by domain engineers who can verify the correctness of learnt inner entanglements,

or iii) by incorporating reformulated tasks along with the original ones into portfolios

such as PbP (Gerevini et al., 2014).

The paper is organised as follows. After discussing related work, basic terminol-

ogy is provided. Then, inner entanglements are introduced. After that reformulation

of planning tasks in order to enforce inner entanglements is presented. Then, theo-

retical analysis of inner entanglements is provided, and an approximation algorithm

for extracting inner entanglements is presented (including the filtering technique for

unpromising inner entanglements). After that, empirical analysis of impact of inner

entanglements in the planning process is provided. Finally, we give conclusions and

present future avenues of research.

6 COMPUTATIONAL INTELLIGENCE

2. RELATED WORK

Generating domain knowledge which can be exploited by planning engines dates

back into 1970s, when systems such as REFLECT (Dawson and Siklóssy, 1977)

were developed. Macros are one of the best known type of domain knowledge in

classical planning, because they can be encoded as normal planning operators and

thus easily added into planning domain models (Korf, 1985). Macro-FF CA-ED

version (Botea et al., 2005), which learns macros through analysis of relations be-

tween static predicates, Wizard (Coles et al., 2007), which learns macros by genetic

algorithms, and BLOMA (Chrpa and Siddiqui, 2015), which exploits a block decom-

position technique (Siddiqui and Haslum, 2012) to learn “long” macros, are good ex-

amples of planner-independent macro learning systems. Although macros and inner

entanglements are based on a similar idea, i.e., enforcing (primitive) operators to be

applied in certain order, inner entanglements do not require the affected operators to

be applied strictly consecutively and inner entanglements can be represented in such

a way that the number of operators’ instances (after grounding) is not higher than

when the original models are considered. The relation between inner entanglements

and macros and how inner entanglements can be exploited for macro learning has

been studied by Chrpa et al. (2013).

A general technique, called commutativity pruning, is used to discard all but one

permutation of commutative (or independent) actions, which do not influence each

other and thus can be executed in any order (Godefroid and Kabanza, 1991). Graph-

plan (Blum and Furst, 1997), one of the best-known planning algorithms, allows

the execution of commutative actions in parallel (in one step). Symmetry breaking

INNER ENTANGLEMENTS 7

is a well known technique for pruning unneeded alternatives in the search space. In

planning, some objects might be symmetric which can be exploited for avoiding

alternatives concerning one object that have been already tried with the object’s

symmetric “twin” (Fox and Long, 1999). In the spirit of works of Emerson and Sistla

(1996) and Rintanen (2003), Pochter et al. (2011) present a pruning technique which

identifies symmetries by exploring automorphisms in state-transition systems. This

approach has been recently extended for cost-optimal planning (Domshlak et al.,

2012). Motivated by the idea of partial order based reduction used in model check-

ing (Valmari, 1996), Chen and Yao (2009) introduce an Expansion Core method,

focusing on cost-optimal SAS+ planning (Bäckström and Nebel, 1995), which in

a node expansion phase (in the A∗ search) restricts on relevant Domain Transition

Graphs rather than all of them. The idea of “expansion cores” is extended into strong

stubborn sets that guarantees stronger pruning than “expansion cores” (Wehrle et al.,

2013). In contrast, inner entanglements prune asymmetrical alternatives. Outer En-

tanglements (Chrpa and Barták, 2009) are relations between operators and initial

or goal atoms which aim to prune unpromising instances of these operators. Outer

and inner entanglements are complementary as has already been demonstrated in

literature (Vallati et al., 2014).

Recent work which is to some extent similar to inner entanglements proposes a

method to learn “bad” causal links in order to generate plans of better quality (Celor-

rio et al., 2013). In contrast to this work, inner entanglements aim to capture possibly

“good” causal links that are enforced in the planning process. Also, “bad” causal

links are learnt by exploring differences between (different) plans solving a single

8 COMPUTATIONAL INTELLIGENCE

planning task while entanglements are learnt by exploring similarities in structures

of solution plans of several planning tasks.

3. PRELIMINARIES

This section is devoted to introducing the terminology that will be used through-

out the paper.

3.1. Classical Planning

Classical planning is concerned with finding a (partially or totally ordered) se-

quence of actions transforming the static, deterministic and fully observable envi-

ronment from the given initial state to a desired goal state (Ghallab et al., 2004; Fox

and Long, 2003).

In the classical representation, a planning task consists of a planning domain

model and a planning problem, where the planning domain model describes the

environment and defines planning operators while the planning problem defines

concrete objects, an initial state and a set of goals. The environment is described

by predicates that are specified via a unique identifier and terms (variable symbols

or constants). For example, a predicate at(?t ?p), where at is a unique identifier, and

?t and ?p are variable symbols, denotes that a truck ?t is in a location ?p. Predicates

thus capture general relations between objects.

Definition 1: A planning task is a pair Π = (DomΠ, P robΠ) where a planning

domain model DomΠ = (PΠ, OpsΠ) is a pair consisting of a finite set of predicates

INNER ENTANGLEMENTS 9

PΠ and planning operatorsOpsΠ, and a planning problem ProbΠ = (ObjsΠ, IΠ, GΠ)

is a triple consisting of a finite set of objects ObjsΠ, initial state IΠ and goal GΠ.

Let atsΠ be the set of all atoms that are formed from the predicates PΠ by

substituting the objects ObjsΠ for the predicates’ arguments. In other words, an

atom is an instance of a predicate (in the rest of the paper when we use the term

instance, we mean an instance that is fully ground). A state is a subset of atsΠ, and

the initial state IΠ is a distinguished state. The goal GΠ is a non-empty subset of

atsΠ, and a goal state is any state that contains the goal GΠ.

Notice that the semantics of state reflects the full observability of the environ-

ment. That is, that for a state s, atoms present in s are assumed to be true in s, while

atoms not present in s are assumed to be false in s.

Planning operators are “modifiers” of the environment. They consist of precon-

ditions, i.e., what must hold prior an operators’ application, and effects, i.e., what is

changed after operators’ application. Specifically, we distinguish between negative

effects, i.e., what becomes false, and positive effects, i.e., what becomes true after

operator’s application. Actions are instances of planning operators, i.e., operators’

arguments as well as corresponding variable symbols in operators’ preconditions

and effects are substituted by objects (constants). Planning operators capture general

types of activities that can be performed. Planning operators can be instantiated to

actions in order to capture given activities between concrete objects.

Definition 2: A planning operator o = (name(o), pre(o), eff−(o), eff+(o)) is spec-

ified such that name(o) = op name(x1, . . . , xk), where op name is a unique identi-

fier and x1, . . . xk are all the variable symbols (arguments) appearing in the operator,

10 COMPUTATIONAL INTELLIGENCE

pre(o) is a set of predicates representing an operator’s precondition, eff−(o) and

eff+(o) are sets of predicates representing an operator’s negative and positive effects.

Actions are instances of planning operators that are formed by substituting objects,

which are defined in a planning problem, for operators’ arguments as well as for

corresponding variable symbols in operators’ preconditions and effects. An action

a = (pre(a), eff−(a), eff+(a)) is applicable in a state s if and only if pre(a) ⊆ s.

Application of a in s, if possible, results in a state (s \ eff−(a)) ∪ eff+(a).

A solution of a planning task is a sequence of actions transforming the environ-

ment from the given initial state to a goal state.

Definition 3: A plan is a sequence of actions. A plan is a solution of a planning

task Π, a solution plan of Π in other words, if and only if a consecutive application

of the actions from the plan starting in the initial state of Π results in the goal state

of Π.

Determining equality of predicates (needed for set operations such as intersec-

tion) is done such that predicates are equal if they have the same name and their

arguments (including their order) are identical. So, an expression p ∈ X ∩ Y , where

X and Y are sets of predicates, means that p has the same name and arguments (in

the same order) in both X and Y . A predicate p is a variant of a predicate q4 if by

renaming p’s variable symbols (arguments) we get a predicate equal to q.

4We can also say that p is unifiable with q

INNER ENTANGLEMENTS 11

3.2. Relations between Actions and Operators

By analysing preconditions and effects of actions or operators we can identify

how these influence each other. As discussed in Chapman’s earlier work (Chapman,

1987), an action having some atom in its positive effects is a possible achiever of

that atom for some other action having that atom in its precondition. The opposite

for being a possible achiever is being a possible clobberer (below referred to simply

as clobberer) which means that action ai deletes atom(s) that aj has in its precon-

dition. Note that being a clobberer refers to the notion of “threat” in plan-space

planning (Sacerdoti, 1975).

Definition 4: Let ai and aj be actions. We say that ai possibly achieves an atom p

for aj if and only if p ∈ eff+(ai) ∩ pre(aj).

We say that ai is a possible clobberer for aj if and only if eff−(ai) ∩ pre(aj) 6= ∅.

Notions of a possible achiever and clobberer can be easily extended for planning

operators.

Definition 5: Let oi and oj be planning operators and p be a predicate. We say that

oi possibly achieves a predicate p for oj if and only if there exist ai, aj and pg,

instances of oi, oj and p respectively, such that ai possibly achieves pg for aj , i.e.,

pg ∈ eff+(ai)∩pre(aj). Similarly, we say that oi is a possible clobberer for oj if and

only if there exist ai, aj , instances of oi, oj respectively, such that eff−(ai)∩pre(aj) 6=

∅.

In every solution plan, every atom in a precondition of an action aj is (necessar-

ily) achieved in the sense that there exists a possible achiever action ai for the atom

12 COMPUTATIONAL INTELLIGENCE

before aj , and there is no action in between ai and aj which deletes the atom (here

the initial state can be viewed as the initial action which only adds atoms, and the

goal can be viewed as the final action which only has precondition atoms). Notice

that being an achiever relates to the notion of “causal link” in plan-space planning.

Definition 6: Let 〈a1, a2, . . . an〉 be a solution plan of some planning task. We say

that an action ai achieves an atom p for an action aj if and only if i < j, p ∈

eff+(ai) ∩ pre(aj) and p 6∈ eff−(ak) for every k ∈ {i+ 1, . . . , j − 1}.

Of course, an action can achieve an atom which then appears in preconditions

of several following actions. Likewise, several actions can achieve an atom for one

action. For the purpose of defining inner entanglements, we have to introduce special

cases of the achiever relation. If ai achieves an atom required by aj and no action in

between them also achieves the atom, then ai is the primary achiever of the atom. In

another case, where an action ai achieves an atom for another action aj and no other

action in between has that atom in its precondition or its positive effects, we say that

ai firstly achieves the atom required by aj . If ai firstly achieves an atom, it follows

that it is also the primary achiever of it.

Definition 7: Let 〈a1, a2, . . . an〉 be a solution plan of some planning task. We say

that an action ai is the primary achiever of an atom p for an action aj if and only if

ai achieves p for aj , and p 6∈ eff+(ak) ∪ eff−(ak) for every k ∈ {i+ 1, . . . , j − 1}.

We also say that an action ai firstly achieves an atom p required by an action aj

if and only if ai achieves p for aj , and p 6∈ eff+(ak) ∪ pre(ak) ∪ eff−(ak) for every

k ∈ {i+ 1, . . . , j − 1}.

INNER ENTANGLEMENTS 13

3.3. BlocksWorld Domain

We briefly introduce the BlocksWorld domain (Gupta and Nau, 1992; Slaney and

Thiébaux, 2001), which is one of the best known planning domains, that will be used

as a running example in the paper.

The BlocksWorld domain describes an environment where we have a finite num-

ber of blocks, one table with unlimited space, and one robotic hand. A block can

be either stacked on another block, placed on the table or held by the robotic hand.

No block can be stacked on more than one block at the same time as well as no

more than one block can be stacked on a block at the same time. The robotic hand

can hold at most one block. The BlocksWorld domain consists of four operators:

pickup(?x) refers to a situation when the robotic hand picks-up a block ?x from the

table, putdown(?x) refers to a situation when the robotic hand puts down the block

?x it is holding to the table, unstack(?x ?y) refers to a situation when the robotic

hand unstacks a “clear” block ?x from a block ?y, and stack(?x ?y) refers to a

situation when the robotic hand stacks the block ?x it is holding to a “clear” block ?y.

As mentioned before, planning operators are instantiated by substituting constants

(objects) for variable symbols that appear in operators’ definition. For example,

putdown(?x) can be instantiated by substituting a, which refers to a concrete block

“a”, for ?x. We then obtain an action putdown(a) that requires the robotic hand to

hold the block a, and the effect is that the block a is placed on the table, the block a

is clear (no other block is stacked on it), and the hand no longer holds it.

14 COMPUTATIONAL INTELLIGENCE

4. INNER ENTANGLEMENTS

Inner Entanglements are relations between pairs of planning operators and pred-

icates. Inner entanglements, informally speaking, represent exclusivity of “achiev-

ing” or “requiring” predicates between operators. That is that for a given planning

task there exists at least one solution plan where a given inner entanglement holds.

In other words, considering that inner entanglement while solving the task will not

prune all possible solution plans. Typically, a predicate can be achieved by more than

one operator as well as more than one operator might require the same predicate.

However, it is often the case that some combinations “achiever-requirer” are not

useful.

Specifically, we have two types of Inner Entanglements, entanglements by suc-

ceeding and entanglements by preceding. An entanglement by succeeding represents

exclusivity of achievement of a predicate p by an operator oi for an operator oj .

For a planning task, where such an entanglement holds, there exists a solution plan

such that instances of oi firstly achieve instances of p exclusively only for instances

of oj . An entanglement by preceding, on the other hand, represents exclusivity of

requirement of a predicate p by an operator oj from an operator oi. For a planning

task, where such an entanglement holds, there exists a solution plan such that only

instances of oi are exclusive primary achievers of instances of p for instances of oj .

For example, in the BlocksWorld domain, it may be observed that operator pickup(?x)

possibly achieves predicate holding(?x) for operators stack(?x ?y) and putdown(?x).

Similarly, it may be observed that predicate holding(?x) is possibly achieved for

operator putdown(?x) by operators unstack(?x ?y) and pickup(?x). We may re-

INNER ENTANGLEMENTS 15

quire that every instance of pickup(?x) firstly achieves an instance of holding(?x)

exclusively for a corresponding instance of stack(?x ?y) since putdown(?x) would

just reverse the effects of pickup(?x) (see Figure 1 right). In other words, pickup(?x)

is entangled by succeeding stack(?x ?y) with holding(?x). Analogously, we may

require that for every instance of putdown(?x), a corresponding instance of un-

stack(?x ?y) is the exclusive primary achiever of an instance of holding(?x) be-

cause, again, putdown(?x) would just reverse the effects of pickup(?x) (see Figure 1

left). In other words, putdown(?x) is entangled by preceding unstack(?x ?y) with

holding(?x).

Roughly speaking, inner entanglements provide restrictions to the plan gener-

ation process since they allow only some combinations of action sequences while

not affecting solvability of considered planning tasks. Whereas the BlocksWorld

example (see Figure 1) indicates one possible nature of inner entanglements, in

general case, the reason why given inner entanglements hold in a given domain

model might vary. Hence, our definition of inner entanglements does not explicitly

capture their nature and “maintains” only solvability of considered planning tasks.

We distinguish two variants of them, strict and non-strict. The strict variant

captures the exclusivity of predicate achievement strictly between involved oper-

ators, while the non-strict variant allows situations where some instances of the

predicates are present in the initial state or can be present in the goal state. For

example, if the initial state of some planning task contains an atom holding(a),

then the strict version of the above entanglement by preceding prevents applying

putdown(a) in the initial state, while the non-strict variant of the entanglement

allows to apply putdown(a) in the initial state. Both strict and non-strict variants of

16 COMPUTATIONAL INTELLIGENCE

inner entanglements are defined as follows. Notice that we assume that operators o1

and o2 share arguments that are relevant to p. For example, pickup(?x) and stack(?x

?y) share the argument ?x, since it is relevant for holding(?x).

[Figure 1 about here.]

Definition 8: Let Π be a planning task. Let o1 and o2 be planning operators, p

be a predicate (o1, o2 and p are defined in the domain model of Π) such that p ∈

eff+(o1) ∩ pre(o2). We say that o1 is strictly entangled by succeeding o2 with p

in Π if and only if there exists a solution plan π of Π and for each a1 ∈ π being an

instance of o1, there exists a2 ∈ π being an instance of o2 such that a1 firstly achieves

an atom pgnd , where pgnd is an instance of p, required by a2.

We also say that o2 is strictly entangled by preceding o1 with p in Π if and only if

there exists a solution plan π of Π and for each a2 ∈ π being an instance of o2, there

exists a1 ∈ π being an instance of o1 such that a1 is the primary achiever of an atom

pgnd , where pgnd is an instance of p, for a2.

Henceforth, strict entanglements by preceding and succeeding are denoted as strict

inner entanglements.

Definition 9: Let Π be a planning task. Let o1 and o2 be planning operators and p

be a predicate (o1, o2 and p are defined in the planning domain model of Π) such that

p ∈ eff+(o1) ∩ pre(o2). We say that o1 is non-strictly entangled by succeeding o2

with p in Π if and only if there exists a solution plan π of Π and for every a1, a2 ∈ π

such that a1 firstly achieves an atom pgnd , where pgnd is an instance of p, required by

a2, it holds that if a1 is an instance of o1 then a2 is an instance of o2.

We also say that o2 is non-strictly entangled by preceding o1 with p in Π if and

INNER ENTANGLEMENTS 17

only if there exists a solution plan π of Π and for every a1, a2 ∈ π such that a1 is the

primary achiever of an atom pgnd , where pgnd is an instance of p, for a2, it holds that

if a2 is an instance of o2 then a1 is an instance of o1.

Henceforth, non-strict entanglements by preceding and succeeding are denoted as

non-strict inner entanglements.

Inner entanglements (both strict and non-strict) can be used for pruning some

unpromising alternatives in the search space, in other words, reducing the branching

factor. Notice that a predicate involved in some inner entanglement relation might

be true for some time after it is achieved, in other words, the predicate does not

have to be ‘used’ immediately after being achieved. Since the previous example of

BlocksWorld might be confusing in this sense (the predicate holding(?x) is immedi-

ately ‘used’ after being achieved), we provide another example in a modification of

the BlocksWorld domain that considers more than one robotic hand. Let pickup(?h

?x) be strictly entangled by succeeding stack(?h ?x ?y) with holding(?h ?x) in

some planning task. If action pickup(h1 a) in applied at step i, then action stack(h1

a ?y) (any other block than a can be substituted for ?y) must be applied at step j

such that j > i. The entanglement prohibits applying action putdown(h1 a) at step

k such that i < k < j. On the other hand, other actions that utilises different robotic

hands than h1 can be applied in between i-th and j-th step.

A single inner entanglement requires only existence of one solution plan of the

given planning task where the entanglement conditions are met. However, different

entanglements might hold in different solution plans. To consider multiple (different)

inner entanglements rather than a single one, there must exist a solution plan in

18 COMPUTATIONAL INTELLIGENCE

which all considered entanglements hold. Also, in practice, inner entanglements

are domain- or class of problems-specific rather than problem-specific. The above

definition can be extended to reflect these aspects.

Definition 10: Let Π be a planning task. Let ENTΠ be a set of inner entanglements,

where each element of ENTΠ is specified by a type of the inner entanglement relation

and involved pair of planning operators and predicate. We say that a set of inner

entanglements ENTΠ holds for Π if and only if there exists a solution plan of Π in

which all the entanglements from ENTΠ hold.

Similarly, ENTP holds for a set of planning tasks P sharing the same planning

domain model if and only if ENTP =
⋂

Π∈P ENTΠ.

Both the BlocksWorld related entanglements hold for every BlocksWorld plan-

ning tasks. By adding two more inner entanglements, namely, unstack(?x ?y) to be

(strictly) entangled by succeeding putdown(?X) and stack(?x ?y) to be (strictly)

entangled by preceding pickup(?X), we restrict to solution plans where blocks are

always put down to the table after being unstacked from other blocks and, eventually,

picked up from the table and stacked on some other blocks. This might be useful

since it introduces more restriction on decisions the planner has to take during the

search. With unlimited table space, these inner entanglements hold for every task.

5. REFORMULATING PLANNING TASKS

To exploit inner entanglements during the planning process we have to develop

a specific planner, modify an existing one, or we have to reformulate a planning

task in such a way that the entanglements hold in every solution plan retrieved by a

INNER ENTANGLEMENTS 19

planner. The last option is planner-independent: in fact, it involves the reformulation

of domain and problem models using features of the PDDL (actually, STRIPS)

language (see Section 3).

Hence, after inner entanglements are identified, we encode them directly into

the planning task. The reformulated planning task is passed to a generic planning

engine in order to generate a solution plan, which is also a solution plan of the

original planning task. Encoding of inner entanglements as we show in this section

prevents planning engines to explore branches of the search space that violate these

entanglements. In other words, reformulated tasks “narrow” the search space for

planning engines for improving their performance.

[Figure 2 about here.]

Encoding inner entanglements is done by introducing supplementary predicates,

‘locks’, that ensure that we cannot apply certain instances of operators in some stage

of the planning process in order to enforce inner entanglements. Let Π be a planning

task and Ops be the set of operators defined in the domain model of Π. Let an

operator o1 ∈ Ops be (strictly or non-strictly) entangled by a succeeding operator

o2 ∈ Ops with a predicate p (defined in the domain model of Π) in Π. Then Π is

reformulated as follows:

(1) Create a predicate p′ (not defined in the domain model of Π) having the same

arguments as p and add p′ to the domain model of Π.

(2) Modify the operator o1 by adding p′ into its negative effects. p′ has the same

arguments as p which is in the positive effects of o1.

20 COMPUTATIONAL INTELLIGENCE

(3) Modify the operator o2 by adding p′ into its positive effects. p′ has the same

arguments as p which is in the precondition of o2.

(4) Modify all operators o ∈ Ops such that o 6= o2 and having a variant of p in pre(o)

by adding p′ into its precondition. p′ has the same arguments as the variant of p.

(5) Modify all operators o ∈ Ops such that o 6= o1 and having a variant of p in

eff+(o) by adding p′ into its positive effects. p′ has the same arguments as the

variant of p.

(6) Add all possible instances of p′ into the initial state of Π and if the entanglement

is strict, then also to the goal of Π.

Figure 2 depicts the BlocksWorld operators encoding an entanglement by suc-

ceeding, concretely that pick-up(?x) is (strictly) entangled by succeeding stack(?x

?y) with holding(?x). In our terminology, pick-up(?x) refers to o1, stack(?x ?y) to

o2, holding(?x) to p, and pick-up stack succ holding(?x) to p′. Correctness of the

reformulation is proved as follows.

Proposition 1: Let Π be a planning task, Ops be the set of planning operators

defined in the domain model of Π. Let o1, o2 ∈ Ops be planning operators and p

be a predicate (p is defined in the domain model of Π) such that o1 is strictly (resp.

non-strictly) entangled by succeeding o2 with p in Π. Let Π′ be a planning task

obtained by reformulating Π using the previous approach. π′ is a solution plan of Π′

if and only if π′ is a solution plan of Π that satisfies the entanglement conditions (see

Definitions 8 and 9).

Proof. Hereinafter, the modified operators o1, o2 will be denoted as o′1, o
′
2. The strict

entanglement by succeeding (see Definition 8) says that if an instance of o1 that

INNER ENTANGLEMENTS 21

achieves an atom pgnd that is an instance of p is applied at step i and a corresponding

instance of o2 that requires pgnd is applied at step j, or never in case of the non-strict

entanglement, so j =∞, then no corresponding instance of any operator other than

o2 having pgnd in its precondition can be applied at step k unless pgnd is re-achieved

by any operator different than o1 at step l. Formally speaking, j > i and if i < k < j,

then i < l < k < j.

Applying an instance of o′1 results in removing an atom p′gnd that is an instance

of p′ having the same arguments as pgnd (notice that all the possible instances of

p′ are present in the initial state of Π′). From step 4 of the reformulation, p′ is put

into the precondition of any operator that has p in its precondition (both p and p′

has the same arguments) except o2. Hence, only instances of o′2 having pgnd in its

precondition can be applied, since actions having pgnd in their precondition that are

not instances of o2 have p′gnd in their preconditions as well. If o′2 is applied or p is re-

achieved by any other (modified) operator than o′1 (see step 5 of the reformulation),

then a corresponding instance of p′ is re-achieved as well.

For the strict version of the entanglement, all the instances of p′ must be present

in the goal state, so o′2 must be applied at some point after o′1. For the non-strict

version of the entanglement, there is no need to re-achieve all the instances of p′,

so o′2 does not have to be applied at some point after o′1 in order to “use” the

corresponding instance of p achieved by o′1, however, no other operator can “use”

it.

Straightforwardly, if π′ is a solution plan of Π′, then π′ is a solution plan of Π

that satisfies the entanglement conditions. The provided reformulation prevents only

application of operators inOps\{o2} having p in their precondition after o1 achieved

22 COMPUTATIONAL INTELLIGENCE

p. Therefore, if π′ is a solution plan of Π that satisfies the entanglement conditions,

then π′ is a solution plan of Π′.

[Figure 3 about here.]

Similarly, we use supplementary predicates, ‘locks’, to enforce entanglements

by preceding. Let Π be a planning task and Ops be the set of operators defined in the

domain model of Π. Let an operator o2 ∈ Ops is (strictly or non-strictly) entangled

by a preceding operator o1 ∈ Ops with a predicate p (defined in the domain model

of Π) in Π. Then Π is reformulated as follows:

(1) Create a predicate p′ (not defined in the domain model of Π) having the same

arguments as p and add p′ to the domain model of Π.

(2) Modify the operator o1 by adding p′ into its positive effects. p′ has the same

arguments as p which is in the positive effects of o1.

(3) Modify the operator o2 by adding p′ into its precondition. p′ has the same argu-

ments as p which is in the precondition of o2.

(4) Modify operators o ∈ Ops such that o 6= o1 and having a variant of p in eff+(o)

by adding p′ into its negative effects (p′ has the same arguments as the variant of

p).

(5) If the entanglement is non-strict, then add all possible instances of p′ to the initial

state of Π.

Figure 3 depicts the BlocksWorld operators encoding an entanglement by pre-

ceding, concretely that put-down(?x) is (strictly) entangled by preceding unstack(?x

?y) with holding(?x). In our terminology, put-down(?x) refers to o2, unstack(?x

INNER ENTANGLEMENTS 23

?y) to o1, holding(?x) to p, and put-down unstack prec holding(?x) to p′. Cor-

rectness of the reformulation is proved as follows.

Proposition 2: Let Π be a planning task, Ops be the set of planning operators

defined in the domain model of Π. Let o1, o2 ∈ Ops be planning operators and

p be a predicate (p is defined in the domain model of Π) such that o2 is strictly

(resp. non-strictly) entangled by preceding o1 with p in Π. Let Π′ be a planning task

obtained by reformulating Π using the previous approach. π′ is a solution plan of Π′

if and only if π′ is a solution plan of Π that satisfies the entanglement conditions (see

Definitions 8 and 9).

Proof. Hereinafter, the modified operators o1, o2 will be denoted as o′1, o
′
2. The strict

version entanglement by preceding (see Definition 8) says that if an instance of o2

requiring an atom pgnd that is an instance of p is applied at step j and a corresponding

instance of o1 is applied at step i achieving pgnd (i < j), then no corresponding

instance of any operator other than o2 having pgnd in its positive effects can be

applied at step k such that i < k < j.

Adding p′ into o2’s precondition results in the situation that any instance of o′2

can be applied only after the corresponding instance of o′1 since p′ is in o′1’s positive

effects. In particular, an instance of o′1 that achieves an atom pgnd (an instance of

p) achieves also p′gnd that is an instance of p′ having the same arguments as pgnd.

The instance of o′2 that requires pgnd requires p′gnd as well. If pgnd is re-achieved

by instance of other (modified) operator than o′1, then p′gnd is removed (step 4 of the

reformulation). Then, o′2 requiring pgnd cannot be applied, since p′gnd will not be true.

For the strict version of the entanglement, no instance of p′ is present in the initial

24 COMPUTATIONAL INTELLIGENCE

state, so o′1 must be applied at some point before o′2. For the non-strict version of the

entanglement all the instances of p′ are present in the initial state, so o′2 does not have

be applied after o′1, however, no other (modified) operator can re-achieve an instance

p in between, since otherwise the corresponding instance of p′ is removed.

Straightforwardly, if π′ is a solution plan of Π′, then π′ is a solution plan of Π

that satisfies the entanglement conditions. The provided reformulation prevents only

application of o2 having p in their precondition unless o1 achieved p. Therefore, if π′

is a solution plan of Π that satisfies the entanglement conditions, then π′ is a solution

plan of Π′.

[Figure 4 about here.]

There are also situations where both the (strict) entanglements by preceding and

succeeding hold for operators o1, o2 and a predicate p. Of course, we can reformulate

the problem according to previous reformulation approaches. On the other hand,

it requires two supplementary predicates and thus the process might not be very

efficient. Given the fact that exclusivity of achievement and requirement of p is

mutual between o1 and o2, we can replace p by its “twin” in the positive effects of o1

and the precondition of o2. Therefore, we introduce a more compact reformulation

that exploits such a property.

Formally, let Π be a planning task and Ops be the set of operators defined in the

domain model of Π. Let o1 ∈ Ops be non-strictly entangled by succeeding o2 ∈ Ops

with p (p is defined in the domain model of Π) in Π, and o2 be strictly entangled by

preceding o1 with p in Π5. Then Π is reformulated as follows:

5The non-strict entanglement by succeeding, a weaker form of the strict entanglement by succeeding, is required for correct

INNER ENTANGLEMENTS 25

(1) Create a predicate p′ (not defined in the domain model of Π) having the same

arguments as p and add p′ to the domain model of Π.

(2) Modify the operator o1 by replacing p by p′ in o1’s positive effects and adding p

into o1’s negative effects.

(3) Modify the operator o2 by replacing p by p′ in o2’s precondition and (possibly)

negative effects.

(4) Modify all operators o ∈ Ops such that o 6= o1 and having a variant of p in

eff+(o) by adding p′ into its negative effects (p′ has the same arguments as the

variant of p).

Figure 4 depicts the BlocksWorld operators encoding both entanglements by

preceding and succeeding, concretely that pick-up(?x) is non-strictly entangled by

succeeding stack(?x ?y) with holding(?x) and stack(?x ?y) is strictly entangled

by preceding pick-up(?x) with holding(?x). In our terminology, pick-up(?x) refers

to o1, stack(?x ?y) to o2, holding(?x) to p, and stack pick-up both holding(?x)

to p′. Correctness of the reformulation is proved as follows.

Proposition 3: Let Π be a planning task, Ops be the set of planning operators

defined in the domain model of Π. Let o1, o2 ∈ Ops be planning operators and p be a

predicate (p is defined in the domain model of Π) such that o2 is strictly entangled by

preceding o1 with p in Π and o1 is non-strictly entangled by succeeding o2 with p in

Π such that both entanglements are compatible. Let Π′ be a planning task obtained

by reformulating Π using the previous approach. π′ is a solution plan of Π′ if and

capture of the entanglements by the encoding. Enforcing the strict entanglement by succeeding would require more complex

encoding mitigating benefits of the introduced compact encoding.

26 COMPUTATIONAL INTELLIGENCE

only if π′ is a solution plan of Π that satisfies the conditions of both entanglements

(see Definitions 8 and 9).

Proof. Hereinafter, the modified operators o1, o2 will be denoted as o′1, o
′
2. If both

the entanglements are strict (see Definition 8), then it says that if an instance of o1

achieving an atom pgnd (an instance of p) is applied at step i and a corresponding

instance of o2 requiring pgnd is applied at step j (j > i), then no corresponding

instance of any operator other than o1 or o2 having pgnd in its precondition or positive

effects can be applied at step k such that i < k < j.

We can observe that o′1 is the only operator achieving p′ but no longer achieving

p. Similarly, o′2 is the only operator requiring p′ (having it in the precondition) but no

longer requiring p. The entanglement by preceding cannot be affected by applying

any (modified) operator o achieving p, since it removes p′ as well (see step 4 of the

reformulation) and thus make o′2 inapplicable. Similarly, if p is true before applying

o′1, it is removed after o′1 is applied and hence any operator requiring p becomes

inapplicable. The strict entanglement by preceding is met since no instance of p′ is

in the initial state of P ′. There is no restriction that prevents occurrences of p′ in any

of the goal states. Therefore, the entanglement by succeeding is non-strict.

Hence, if π′ is a solution plan of Π′, then π′ is a solution plan of Π that sat-

isfies the conditions of both entanglements. The provided reformulation prevents

only application of o2 having p in their precondition unless o1 achieved p as well

as application of any operator other than o2 having p in its precondition after o1

achieved p. Therefore, if π′ is a solution plan of Π that satisfies the entanglement

conditions, then π′ is a solution plan of Π′.

INNER ENTANGLEMENTS 27

6. THEORETICAL FOUNDATIONS OF INNER ENTANGLEMENTS

This section is devoted to theoretical properties of inner entanglements such as

complexity results as well as their expected impact on planners.

6.1. Landmark Theory

Landmark theory (Hoffmann et al., 2004) is a useful framework for studying

structures of planning tasks. We will use a fragment of the landmark theory to prove

intractability (PSPACE-completeness) of deciding whether a given inner entangle-

ment holds. The notions we will use are briefly introduced in the following lines, for

more details see (Hoffmann et al., 2004).

Landmarks are atoms which must be achieved at some point in every solution

plan of a given planning task. Deciding whether atoms are landmarks is PSPACE-

complete (Hoffmann et al., 2004).

Ordering landmarks is useful for computing heuristics (Richter and Westphal,

2010). Landmarks p and q are greedily necessarily ordered (we denote it as p→g q)

if for every solution plan of a given planning task, p is achieved before q is achieved

for the first time. Deciding greedy necessary ordering of landmarks is also PSPACE-

complete (Hoffmann et al., 2004).

6.2. Intractability of Entanglements

The intractability (PSPACE-completeness) of deciding whether a given inner

entanglement holds in a given task is proved by the following theorem.

Theorem 1: Let Π′ be a planning task, op′ and oq′ be planning operators and p′′ a

28 COMPUTATIONAL INTELLIGENCE

predicate defined in the domain model of Π′. The problem of deciding whether op′ is

strictly entangled by succeeding oq′ with p′′ in Π′ is PSPACE-complete. The problem

of deciding whether oq′ is strictly entangled by preceding op′ with p′′ in Π′ is also

PSPACE-complete.

Proof. First, we show that the problem of deciding whether op′ is strictly entangled

by succeeding oq′ with p in Π′ as well as the problem of deciding whether oq′ is

strictly entangled by preceding oq′ with p in Π′ belongs to the PSPACE class. To

do this, we reformulate Π′ by encoding the given inner entanglement as described

in Section 5. Hence, the decision problem of whether the given inner entanglement

holds can be encoded as a planning task, i.e., the entanglement holds if and only if the

reformulated task is solvable. We know we can solve planning tasks in polynomial

space, hence this decision problem belongs to PSPACE.

We reduce, in polynomial time, the problem of deciding whether landmarks p

and q are greedily necessarily ordered, i.e., p→g q, in some planning task Π, which

is PSPACE-complete, to the problem of deciding strict entanglements by succeeding

or preceding between op′ , oq′ and p in Π′. Without loss of generality, we assume that

p and q are nullary predicates (atoms) defined in the domain model of Π.

We create a planning task Π′ by modifying Π as follows. Let Ops be the set

of planning operators defined in the domain model of Π. Let Opsp = {o | o ∈

Ops, p ∈ eff+(o)} be the set of operators achieving p and Opsq = {o | o ∈ Ops, q ∈

eff+(o)} be the set of operators achieving q. We extend the domain model of Π by

adding atoms (nullary predicates) r, p′, p′′, q′ and q′′ (without loss of generality we

assume that none of these is defined in the domain model of Π). Then, we add r

INNER ENTANGLEMENTS 29

into preconditions of every operator from Ops. Then, we modify operators in Opsp

and Opsq as follows. For every o ∈ Opsp : replace p by p′ in eff+(o) and add r into

eff−(o). For every o ∈ Opsq : add q′ into eff+(o) and add q′′ into eff−(o). The initial

state I of Π is modified as follows. If p ∈ I , then replace p by p′. If p 6∈ I , then

add r. If q ∈ I , then add q′, otherwise add q′′ (if q 6∈ I). Notice that q′ becomes and

remains true when q has been achieved and q′′ is true only before q is achieved (if q

is true in the initial state, q′′ is never true).

For the strict entanglements by succeeding case, we introduce the following

operators (without loss of generality we assume that none of the operators is de-

fined in the domain model of Π), i.e, op′ = (name(op′), {p′}, {p′}, {p′′}), oq′ =

(name(oq′), {p′′, q′}, {p′′}, {p, r}) and oq′′ = (name(oq′′), {p′′, q′′}, {p′′}, {p, r}),

and add them into the domain model of Π. Notice that name(op′), name(oq′) and

name(oq′′) contain only unique operator identifiers (and no variable symbols). We

can observe that if op′ is strictly entangled by succeeding oq′ with p′′ in Π′ (the

modification of Π), then q must be true before or at the same time when p is achieved.

This is, because q′ becomes true after q is achieved (as mentioned before), and

according to the entanglement there is a solution plan π′ of Π′ such that op′ always

achieves p′′ for oq′ . Removing instances of op′ and oq′ from π′ gives us a plan π

which is a solution plan of Π. Given the modification of all operators from Opsp, p

becomes true in π in the same time as p′ becomes true and r becomes false in π′.

Then, only op′ and oq′ can be applied (in this order) in π′, because other operators

have r in their preconditions, and r can be re-achieved by oq′ . From this, we can get

that q′ must be achieved before op′ is applied in π′. Therefore, q is achieved before

or in the same time as p in π, which is a solution plan of Π, and thus p →g q does

30 COMPUTATIONAL INTELLIGENCE

not hold in Π. Hence, op′ is strictly entangled by succeeding oq′ with p′′ in Π′ (the

modification of Π) if and only if p→g q does not hold in Π.

For the strict entanglements by preceding case, we introduce the following opera-

tors (without loss of generality we assume that none of the operators is defined in the

domain model of Π), i.e, op′ = (name(op′), {p′, q′}, {p′}, {p′′}), op′′ = (name(op′′),

{p′, q′′}, {p′}, {p′′}), and oq′ = (name(oq′), {p′′}, {p′′}, {p, r}) and add them into

the domain model of Π. Notice that name(op′), name(op′′) and name(oq′) contain

only unique operator identifiers (and no variable symbols). Analogously to the pre-

vious case, we can observe that if oq′ is strictly entangled by preceding op′ with p′′

in Π′ (the modification of Π), then q must be true before or at the same time as p

is achieved. Therefore, there exists π′, a solution plan of Π′ where the entanglement

holds. Again, removing instances of op′ and oq′ from π′ gives us a plan π which is a

solution plan of Π. Analogously to the previous case, after a modified operator from

Opsp is applied in π′, then only op′ and oq′ (in this order) can be applied before any

other operator can be applied. Therefore, q′ must be achieved before op′ is applied

in π′ and thus q is achieved before or in the same time as p in π, so p →g q does

not hold in Π. Hence, oq′ is strictly entangled by preceding op′ with p′′ in Π′ (the

modification of Π) if and only if p→g q does not hold in Π.

Clearly, modification of Π in both cases is done in polynomial time. Hence, since

the problem of deciding whether landmarks p and q are greedily necessarily ordered

in Π is PSPACE-complete, the problem deciding whether op′ is strictly entangled by

succeeding oq′ with p in Π′ as well as the problem deciding whether oq′ is strictly

entangled by preceding op′ with p in Π′, where both problems belong to PSPACE, is

PSPACE-complete as well.

INNER ENTANGLEMENTS 31

Corollary 1: Let Π′ be a planning task, op′ and oq′ be planning operators and p′′ a

predicate defined in the domain model of Π′. The problem of deciding whether op′

is non-strictly entangled by succeeding oq′ with p′′ in Π′ is PSPACE-complete. The

problem of deciding whether oq′ is non-strictly entangled by preceding op′ with p′′

in Π′ is also PSPACE-complete.

Proof. The problem of deciding of either of the non-strict inner entanglements can

be encoded as a planning task (Π′ is reformulated as described in Section 5), so it

belongs to PSPACE. Since the strict version of inner entanglements are special cases

of the non-strict version, the problem is PSPACE-complete.

Intractability of deciding whether a single entanglement holds for a given plan-

ning task implies intractability of deciding whether a set of inner entanglements

holds for that task.

Corollary 2: Let e1 and e2 be inner entanglements that hold in a planning task Π.

The problem of deciding whether a set {e1, e2} holds in Π is PSPACE-complete.

Proof. Without loss of generality, let Πe1 be a planning task obtained by reformu-

lating Π considering e1. Then, the problem of deciding whether {e1, e2} holds in Π

is equivalent to the problem of deciding whether e2 holds in Πe1 which is PSPACE-

complete.

The presented theoretical results say that deciding whether a set of inner entan-

glements holds in a planning task is (theoretically) as hard as solving the task. Hence,

in order to benefit from inner entanglements we have to spend (much) less time on

32 COMPUTATIONAL INTELLIGENCE

their generation than how much time we can save by their use. Learning them from

simple planning tasks is a viable option, since such tasks can usually be solved and

analyzed very quickly.

6.3. Trivial Entanglements

Despite the complexity results, there are some cases where we can trivially

identify inner entanglements (hereinafter referred as trivial inner entanglements).

The following situations refer to special cases where there is no way to violate inner

entanglements in the planning process. However, trivial inner entanglements do not

provide any new domain-specific information and hence we do not have to consider

them in the reformulation.

We can observe that having only one achiever or ‘requirer‘ of some predicate

trivially satisfy the conditions of exclusivity. In other words, if only one operator

achieves a certain predicate, then it is its exclusive achiever for all the operators that

require this predicate. Similarly, if only one operator requires a certain predicate,

then it is its exclusive ‘requirer‘ from all the operators that achieve this predicate.

Lemma 1: Let Π be a planning task, Ops be the set of planning operators and p be

a predicate defined in the domain model of Π. If there exists exactly one oi ∈ Ops

such that p ∈ eff+(oi), then for every ok ∈ Ops such that p ∈ pre(ok) it holds that ok

is non-strictly entangled by preceding oi with p in Π.

Lemma 2: Let Π be a planning task, Ops be the set of planning operators and p be

a predicate defined in the domain model of Π. If there exists exactly one oi ∈ Ops

INNER ENTANGLEMENTS 33

such that p ∈ pre(oi), then for every ok ∈ Ops such that p ∈ eff+(ok) it holds that ok

is non-strictly entangled by succeeding oi with p in Π.

6.4. Identifying Inner Entanglements: Case Studies

This section is devoted to investigate identifying and (re)using inner entangle-

ments from knowledge engineering perspective. Whereas it is usually feasible to

consider inner entanglements as domain-specific rather than task-specific, even small

modifications in domain models can invalidate some of the entanglements and, pos-

sibly, introduce some other entanglements.

An illustrative example we used earlier in the text identified two inner entangle-

ments in the BlocksWorld domain, i.e., the operator putdown is entangled by the

preceding operator unstack with the predicate holding and the operator pickup is

entangled by the succeeding operator stack with the predicate holding. Whether the

entanglements are strict or non-strict depends on whether a block is initially held by

the robotic hand or whether the same is required in the goal state. The entanglements

in fact prevent applying the operators pickup and putdown consecutively since they

just reverse each other’s effects, thus doing so is clearly meaningless. Extending the

BlocksWorld domain by introducing an operator paint which paints the block while

it is held by the robotic hand might invalidate the entanglements in some cases.

pickup can then achieve holding for both stack and paint, so the exclusivity re-

quired by the entanglement is not met. putdown can meaningfully use the predicate

holding achieved by pickup since we can paint the block (apply the paint operator)

in between, so the entanglement by preceding might not be met.

The Depots domain is a combination of the BlocksWorld domain and the Logis-

34 COMPUTATIONAL INTELLIGENCE

tics domain such that crates are arranged in stacks and operated by hoists in the same

way as blocks in BlocksWorld but can be also transported by trucks between different

locations. The lift and drop operators correspond with the BlocksWorld’s unstack

and stack operators respectively. The load and unload operators are variants of the

BlocksWorld’s putdown and pickup operators such that instead of putting to and

picking up crates from the table they load crates to or unload crates from trucks

respectively. In Depots, we may observe, for instance, that the operator lift is entan-

gled by the succeeding operator load with the predicate lifting, load is entangled by

preceding lift with lifting, the operator drop is entangled by the preceding operator

unload with lifting and unload is entangled by succeeding drop with lifting. If no

instance of lifting is present in the initial state or the goal, then the entanglements

are strict. If there is no truck defined in the problem, then we cannot apply load

or unload, hence the entanglements do not hold (otherwise it will not be possible

to apply lift and drop consecutively). Modifying the domain model in such a way

that particular trucks can move only between some locations might introduce the

necessity of reloading crates from one truck to another. This will certainly affect two

of the entanglements, in particular, load will no longer entangled by preceding lift

with lifting and unload will no longer entangled by succeeding drop with lifting.

However, tasks in which some crate(s) have to be reloaded can be easily identified.

It should be noted that the aforementioned examples indicate that the nature of

inner entanglements varies per domain model. Therefore, it seems, in our opinion,

that refining not very restrictive general rules for identifying inner entanglements

might not be a feasible option. Domain model engineers can either identify inner

INNER ENTANGLEMENTS 35

entanglements by hand, or exploit our method based on the “learning in planning”

paradigm that is presented in Section 7.

6.5. Expected Impact of Inner Entanglements on the Planning Process

Inner entanglements eliminate unpromising alternatives in the search space which

reduces the branching factor in search. Introducing supplementary predicates re-

quired for encoding inner entanglements, however, introduces additional facts (atoms)

planners have to deal with during search and, moreover, memory requirements might

therefore be higher. Hence, the impact of inner entanglements is determined by

considering whether the potential benefits of reducing the branching factor outweigh

overheads caused by handling supplementary predicates. An analogy can be seen in

determining whether a macro-operator is useful, in literature also referred as a utility

problem (Minton, 1988).

Taking a closer look on how inner entanglements are encoded provides insights

into how they may influence delete-relaxed heuristics, which is a common technique

used in planning engines. Having an operator o2 strictly entangled by a preceding

operator o1 with a predicate p captures a situation where an instance of o2 can be

applied only if a corresponding instance of p is achieved by an instance of o1. This

is enforced by putting a supplementary predicate p′ into o1’s positive effects and

into o2’s precondition. In delete-relaxed plans, o1 must be also applied at some point

before o2. However, an operator o 6= o2 achieving p (and thus removing p′) can

be placed in between o1 and o2 in delete-relaxed plans which does not correspond

with the entanglement conditions. Entanglements by preceding are therefore only

partially taken into account while computing delete-relaxed heuristics. Having an

36 COMPUTATIONAL INTELLIGENCE

operator o1 strictly entangled by a succeeding operator o2 with a predicate p captures

a situation where an instance of o1 achieves a corresponding instance of p for an

instance of o2. This is enforced by putting a supplementary predicate p′ into o1’s

negative effects and into preconditions of operators other than o2 that have p in

their preconditions. However, in delete-relaxed plans, applying o1 does not prevent

applying any other operator having p in its precondition. Therefore, entanglements

by succeeding are not taken into account while computing delete-relaxed heuristics.

Intuitively, only entanglements by preceding might be beneficial on planners based

on delete-relaxed heuristics (e.g. FF).

However, recent empirical results do not confirm this intuition by showing that

in some cases entanglements by succeeding can be very beneficial even for planners

based on delete-relaxed heuristics (Chrpa and Vallati, 2013). To understand potential

benefits of entanglements by succeeding we have to take a different view. A heuristic

may suggest to apply an operator o 6= o2 requiring p from o1. However, after actual

application of o1 it will become impossible to apply o (due to the entanglement con-

ditions), since o2 will be enforced. Although it might cause planners to be ‘trapped’

in a local minimum of the heuristics, it might also prevent planners to get into

‘deeper’ local minima which might eventually happen if o is applied instead of o2.

If both (strict) entanglements by preceding and succeeding hold between o1, o2

and p, the compact encoding involves replacing p with p′ in o1’s positive effects and

o2’s precondition. In delete-relaxed plans, o2 cannot be applied unless o1 is, which

is similar to the entanglements by preceding case, and, moreover, o1 cannot achieve

p for any other operator than o2 (because p is replaced by p′). Although as in the

entanglements by preceding case an operator achieving p can be placed in between

INNER ENTANGLEMENTS 37

o1 and o2 in delete-relaxed plans, which does not correspond to the entanglements

conditions, both the entanglements are taken into account to reasonable extent while

computing delete-relaxed heuristics.

The compact encoding (when both entanglements by preceding and succeeding

hold between a pair of operators and a predicate) is intuitively beneficial for planners.

The potential impact of inner entanglements seems to be correlated with the shape

of search space, in other words, whether inner entanglements can prevent planners

to end up in undesirable states (e.g dead-ends, “deep” local minima). We believe

that maximising sets of compatible inner entanglements does not imply maximising

planners’ performance, because some of the entanglements might in fact have a neg-

ative impact, for instance, by introducing supplementary predicates planners might

deal with or introducing local minima in the heuristics landscape. Possible examples

of “bad” inner entanglements are those that consist of operators whose instances

appear sporadically in plans, because such inner entanglements bring only a little

information for possibly high overheads. Also, if an inner entanglement prunes only

a few alternatives, then overheads introduced with it might be higher than its possible

benefit. For example, after picking up a block, we might either put it down or stack

it on some other clear block. Clearly, the number of clear blocks might be up to

n − 1, where n is the number of all blocks. If pickup(?x) is (strictly) entangled

by succeeding stack(?x ?y) with holding(?x), then we cannot apply putdown(?x)

after pickup(?x). Hence, we prune one alternative, keeping n− 1 alternatives in the

worst case. Similarly, after unstacking a block from another block we can either put

it down or stack it on some clear block. If putdown(?x) is (strictly) entangled by

preceding unstack(?x ?y), then we cannot apply stack(?x ?z) after unstack(?x

38 COMPUTATIONAL INTELLIGENCE

?y). Hence, we keep only one alternative, pruning n−1 alternatives in the best case.

Given this observation, the latter entanglement is much more informative than the

former one. Intuitively, the former entanglement is not helpful and very likely will

worsen the planning process. The latter entanglement, on the other hand, seems to

be helpful and should improve the planning process.

7. EXTRACTING INNER ENTANGLEMENTS

Algorithm 1 Checking how many times a given operator achieves (requires) a

predicate to (from) another operator in the training plans.
1: initialize ent arrays(); . create empty arrays entP, entS of size

[Ops,Ops,Preds]

2: initialize op counter(); . create an empty array counter of size [Ops]

3: for each training plan π = 〈a1, . . . an〉 do

4: for i := 1 to n do

5: for each p ∈ pre(ai) do

6: a := last achiever(p, 〈a1 . . . ai−1〉);

7: if a 6= NULL then

8: entP [is inst(ai), is inst(a), is inst(p)] + +;

9: entS[is inst(a), is inst(ai), is inst(p)] + +;

10: end if

11: end for

12: counter[is inst(ai)] + +;

13: end for

14: end for

INNER ENTANGLEMENTS 39

Deciding whether a given set of inner entanglements holds in a given task is

generally PSPACE-complete (as discussed in Section 6). Moreover, trivial entan-

glements (see Section 6.3) are not informative and thus not considered for task

reformulation. Therefore, we have to devise an effective approximation technique

for extracting sets of inner entanglements. We assume that tasks having the same

domain model have a similar structure, so the same set of inner entanglements holds

in all of them. Hence, we can select a representative set of simple tasks for each

domain model as training tasks, so those can be solved easily by standard planning

engines. Generated training plans, that is the solutions of these training tasks, are

then explored in order to find what inner entanglements hold in them.

The above approach can be formalised as follows. Let P be a class of planning

tasks that has the same domain model. Let PT ⊂ P be a set of training tasks. In our

approximation method, we assume that ENTPT
= ENTP , in other words, a set of

inner entanglements holding on training planning tasks also holds on the whole class

of planning tasks. This assumption is, of course, a source of incompleteness, since

enforcing incorrect entanglements may cause some tasks becoming unsolvable. On

the other hand, planning tasks having the same domain model are of similar structure

(e.g. they differ only by number of objects), which is the case of the most of IPC

benchmarks. Hence, we believe that selecting a small set of these tasks such that

selected tasks are easy but not trivial can alleviate the incompleteness issue and

thus support the assumption. Our empirical study that also explores these issues is

provided in Section 8.

The method for extracting inner entanglements from (training) plans works as

follows. For every action we check which actions achieved atoms for it or vice versa.

40 COMPUTATIONAL INTELLIGENCE

This information is used to determine the cases where exclusivity of predicate’s

achievement or requirement between a pair of operators applies. This concept is

elaborated in Algorithm 1. For this purpose, we define an array counter, which

stores information about how many instances of given operators occur in the train-

ing plans, 3D arrays entP, entS, which count how many times a given operator

achieves/requires a predicate to/from another operator. Function is inst(arg) re-

turns either an operator if arg (action) is an instance of it or a predicate if arg (atom)

is an instance of it. Function last achiever(p, 〈a1, . . . , ak〉) returns the last action

in the sequence (〈a1, . . . , ak〉) that has p in its positive effects, or NULL if no such

action exists (i.e., p is an initial atom).

Algorithm 1 requires linear time with respect to the lengths of given training

plans if the number of atoms in actions’ preconditions and effects is much lower than

lengths of training plans, so it can be bounded by a constant. Notice that information

retrieved by the last achiever function can be stored in a hash table, hence constant

time is needed.

7.1. Flaw Ratio

From Algorithm 1, it is easy to determine whether a given set of inner entangle-

ments holds in all the training plans. However, it is often not a very efficient way to

determine a useful set of inner entanglements. There are two main reasons. Firstly,

training plans might contain redundant actions or very sub-optimal sub-plans which

can prevent detecting some useful entanglements. Secondly, there might be several

strategies how a task can be solved, where only some of these lead into discovery

of some useful entanglements. For example, in BlocksWorld, we might “put aside”

INNER ENTANGLEMENTS 41

blocks in two different ways: put them on the table, or stack them on other blocks.

Only the former way leads to the discovery of two useful inner entanglements, i.e.,

unstack is (strictly) entangled by succeeding putdown with holding, and stack is

(strictly) entangled by preceding pickup with holding.

Introducing a flaw ratio η ∈ [0; 1] which is a parameter referring to an allowed

percentage of “flaws” in training plans, can identify inner entanglements that can

be discovered in plans that are “close” to the training plans. In other words, the

exclusivity of predicate achievement or requirement between a pair of operators

might only be satisfied to some extent in the training plans, while in some other

solution plans the exclusivity can be fully satisfied. For example, in Blocksworld,

the blocks might occasionally be “put aside” to other blocks in the training plans

and thus cause that the useful inner entanglements (as above) are not detected. By

considering flaw ratio, these inner entanglements can be found.

Let η be the flaw ratio, then the following equations determine when a given

inner entanglement can be considered (sprec and ssucc stand for the strict version

of entanglements by preceding and succeeding respectively):

(prec, o1, o2, p) ⇔ entP [o1, o2, p] > 0 ∧ ∀o 6= o2 :
entP [o1, o, p]

counter[o1]
6 η (1)

(succ, o1, o2, p) ⇔ entS[o1, o2, p] > 0 ∧ ∀o 6= o2 :
entS[o1, o, p]

counter[o1]
6 η (2)

(sprec, o1, o2, p) ⇔
entP [o1, o2, p]

counter[o1]
> 1− η ∧ ∀o 6= o2 :

entP [o1, o, p]

counter[o1]
6 η (3)

(ssucc, o1, o2, p) ⇔
entS[o1, o2, p]

counter[o1]
> 1− η ∧ ∀o 6= o2 :

entS[o1, o, p]

counter[o1]
6 η (4)

42 COMPUTATIONAL INTELLIGENCE

7.2. Filtering Unpromising Inner Entanglements

Following the discussion from Section 6.5 we can derive that pruning power of

inner entanglements is crucial for having positive impact on the planning process. In

other words, inner entanglements are more likely to be beneficial if they can prune a

relatively large number of search alternatives. Otherwise, inner entanglements might

have detrimental effect on performance of planning engines because of the overhead

caused by their representation.

We identified two main cases in which inner entanglements do not have a strong

pruning power. Firstly, inner entanglements where operators that are rarely applied in

plans are involved. Training plans can provide a good indication of “rare” operators.

So we can assume that if an operator appears rarely in training plans, then it will be

used rarely also for other planning problems in a given domain. Hence, we define

a threshold ε and filter out such inner entanglements where any of the involved

operators (o1 and o2) has less instances in the training plans, i.e:

counter[o1] < ε ∨ counter[o2] < ε

Secondly, comparing the number of arguments that “entangled” and “prohibited”

operators have. Recall the example from Section 6.5, where pickup(?x) is (strictly)

entangled by succeeding stack(?x ?y) with holding(?x). The entanglements pro-

hibits applying putdown(?x) after pickup(?x). In our words, stack(?x ?y) is the

“entangled” operator and putdown(?x) is the “prohibited” operator. Clearly, only

1 alternative is pruned (only one instance of putdown(?x) can be applied after

pickup(?x)) while up to n − 1 alternatives are allowed (up to n − 1 instances

of stack(?x ?y) can be applied after pickup(?x)), so the pruning power of the

INNER ENTANGLEMENTS 43

entanglement is poor. The number of operators’ arguments is thus a good indicator

for estimating the numbers of pruned search alternatives. Hence, if the number of

arguments of the “entangled” operator is higher than all the “prohibited” operators,

then the entanglement is unpromising. Formally, let arg(o) denote the number of

arguments of an operator o. Let an operator o1 be (strictly) entangled by a succeeding

operator o2 with a predicate p, the entanglement is considered as unpromising if:

∀o 6= o2, p ∈ pre(o) : arg(o) < arg(o2)

Analogously, let an operator o2 be (strictly) entangled by a preceding operator o1

with a predicate p, the entanglement is considered as unpromising if:

∀o 6= o1, p ∈ eff+(o) : arg(o) < arg(o1)

Unpromising inner entanglements are filtered out except cases where both types

of inner entanglements hold for the operators o1, o2 and the predicate p, and only

one of the entanglements is unpromising. Such an exception follows the observation

discussed in Section 6.5 that the compact encoding of such entanglements does not

introduce more overheads than the encoding of a single (inner) entanglement.

7.3. Inner Entanglement Extraction

Algorithm 2 wraps up the method for extracting inner entanglements. Given

generated training plans we can fill the arrays entP, entS and counter by running

Algorithm 1. An initial value init-fr of the flaw ratio η is assigned. The main loop

(Lines 4-12) iteratively validates whether using the given flaw ratio does not lead to

extraction of entanglements that do not hold in the training tasks. The validation

is done by extracting the non-trivial inner entanglements using the current flaw

44 COMPUTATIONAL INTELLIGENCE

Algorithm 2 Extraction of entanglements with the flaw ratio.
1: generate training plans

2: fill arrays (Alg. 1)

3: η = init-fr

4: while η > 0 do

5: extract inner entanglements considering η (see equations (1)-(4))

6: filter unpromising inner entanglements (see Section 7.2)

7: generate reformulated training problems

8: if reformulated training problems are solvable then

9: break

10: end if

11: η = max(0, η − step)

12: end while

13: generate reformulated (testing) problems

ratio η (Line 5), filtering unpromising inner entanglements (Line 6), generating

reformulated training problems considering the extracted entanglements (Line 7)

and running a planner on these reformulated problems (Line 8). Introducing the flaw

ratio may cause that the set of extracted inner entanglements does not even hold for

the training problems. If such a situation occur, the flaw ratio is decreased by step

(Line 11) and the process (for Line 4) is repeated. Clearly, if η = 0, then the set of

extracted inner entanglements holds for the training tasks.

INNER ENTANGLEMENTS 45

8. EXPERIMENTAL EVALUATION

This section is devoted to the empirical evaluation of the impact of entangle-

ments in the plan generation process. The aims of the experiments are to analyse the

impact of inner entanglements on state-of-the-art planning engines and how quality

of training plans influences detection and extraction of inner entanglements. For

the empirical evaluation purposes we used all the domains from the learning track

of IPC-7; since inner entanglements are automatically extracted domain-specific

knowledge, the learning track benchmarks seem to be appropriate. This test set is

thus independent, open, and gives a relatively wide coverage.

In each domain, the planning tasks have the same domain model and thus differ

only by planning problem specifications. Henceforth, training problems denote tasks

that are used for learning entanglements, and testing problems denote tasks that are

used as benchmarks.

8.1. Benchmark Planners

In order to perform our analysis, we selected a number of planners according

to i) their performance in the IPCs, and ii) the variety of techniques they exploit.

Selected planners are: Metric-FF (Hoffmann, 2003), LPG-td (Gerevini et al., 2003),

LAMA (Richter and Westphal, 2010; Richter et al., 2011), Probe (Lipovetzky and

Geffner, 2011; Lipovetzky et al., 2014), MpC (Rintanen, 2012, 2014), Yahsp3 (Vidal,

2014), and Mercury (Domshlak et al., 2015).

Metric-FF (Hoffmann, 2003) is an extension of the well known FF planner (Hoff-

mann and Nebel, 2001) which won the 2nd IPC. The FF’s search strategy is a varia-

tion of hill-climbing over the space of the world states, and in FF the goal distance

46 COMPUTATIONAL INTELLIGENCE

is estimated by solving a relaxed task for each successor world state. Compared to

the first version of FF, Metric-FF is enhanced with goal orderings pruning technique

and with the ordering knowledge provided by a goal agenda.

LPG-td won the 3rd IPC. It uses stochastic local search in a space of partial plans

represented through linear action graphs, which are variants of the very well-known

planning graph (Blum and Furst, 1997). The search steps are graph modifications,

transforming an action graph into a different one.

LAMA (Richter and Westphal, 2010; Richter et al., 2011) won the 6th and 7th

IPC (sequential satisficing track). LAMA translates the PDDL problem specification

into a multi-valued state variable representation (“SAS+”) and searches for a plan

in the space of the world states using a heuristic derived from the causal graph, a

particular graph representing the causal dependencies of SAS+ variables. Its core

feature is the use of a pseudo-heuristic derived from landmarks.

Probe (Lipovetzky and Geffner, 2011; Lipovetzky et al., 2014) was successful in

IPC-7 and IPC-8. It implements a dual search architecture for planning that is based

on the idea of probes: single action sequences computed without search from a given

state that can quickly go deep into the state space, terminating either in the goal or

in failure.

MpC (Rintanen, 2012, 2014) was a runner-up in the agile track of IPC-8. MpC

is a SAT-based planner that exploits an extremely compact SAT representation of

planning tasks and an integrated SAT solver.

Yahsp3 (Vidal, 2014) won the agile track of IPC-8. Yahsp is a heuristic search

based planner that exploits information obtained from computation of the heuris-

INNER ENTANGLEMENTS 47

tics, which is similar to the heuristic used in FF. Such information is used to find

“lookahead states” that are reachable but “far” from the current state.

Mercury (Domshlak et al., 2015) was a runner-up in the satisficing track of IPC-

8. Similarly to LAMA, Mercury translates the PDDL representation into a SAS+

multi-valued state variable representation. It then exploits the Red-Black heuristics,

that uses only partial delete-relaxation.

8.2. Experimental Setup

In Machine Learning, it is important to have a good quality training set in order to

maximise the outcome of the learning process. From the planning perspective, train-

ing plans should well capture the important structural aspects that are generalizable

to the whole class of planning tasks. If training plans are too short, their structure

might be over-constrained and thus we might extract some inner entanglements that

do not hold for many typical tasks of a given class. On the other hand, planning

is computationally very expensive and thus obtaining long training plans might be

too time consuming or even impossible. Hence, we have observed that a reasonable

size for a training problem is when the length of its solution plan is between 20 and

100 actions, depending on the number of defined operators in the domain models

(more operators yields longer solution plans). Moreover, the number of training

problems does not have to be high. This follows the observation made by Chrpa et al.

(2013) that the set of extracted entanglements often does not change, or changes

are very small, with increasing number of training problems. Similar observations

have been made when configuring portfolios of planners (Núñez et al., 2012). On

the other hand, using very few training problems increases the risk of extracting

48 COMPUTATIONAL INTELLIGENCE

inner entanglements that do not hold (we might be “lucky” to have a very atypical

problem as a training one). Following these observations, 5 training problems per

domain were used. Notice that in the learning track of IPC-7 (Coles et al., 2012),

a set of training problems is not explicitly provided and thus the training problems

were generated by existing problem generators.

Strict versions of inner entanglements were learnt6. The benchmark planners

were used to generate training plans. The flaw ratio (η) was initially set to 0.2,

and, in case of any of the training problems became unsolvable after incorporating

entanglements7, the flaw ratio was iteratively reduced by 0.05 until all the training

problems became solvable while entanglements were considered, or the flaw ratio

dropped to 0.0 (for details, see Algorithm 2). Although in the previous work (Chrpa

and McCluskey, 2012) the flaw ratio is set to 0.1, we observed on some preliminary

experiments, performed on a small set of benchmarks (not included in the rest of

this experimental analysis) that such a value is too conservative. On the other hand,

setting the value above 0.2 led to extraction of inner entanglements that often did not

hold in the training problems. The threshold ε (see Section 7.2) is set to 20, which

means that the operator must be used at least four times in average in each training

plan.

A CPU-time cutoff of 900 seconds (15 minutes, as in learning tracks of IPC) was

used for both learning and testing runs. All the experiments were run on a quad core

2.8 Ghz CPU machine with 4GB of RAM. In this experimental analysis, IPC scores

6Although the compact encoding for situations where both types of inner entanglements are involved requires the non-strict

version of entanglements by succeeding, correctness is not compromised, since the strict versions of inner entanglements are

special cases of the non-strict versions.
7by “unsolvable” we mean those problems where the planner did not find a solution in the time limit of 600s

INNER ENTANGLEMENTS 49

as defined in IPC-7 are used. For a planner C and a problem p, Time(C, p) is 0 if p

is unsolved, and 1/(1 + log10(Tp(C)/T ∗p)), where Tp(C) is the CPU time needed by

planner C to solve problem p and T ∗p is the CPU-time needed by the best considered

planner, otherwise. Similarly, Qual(C, p) is 0 if p is unsolved, and N∗p/Np(C), where

Np(C) is the cost of the plan, solution of p, obtained by C and N∗p is the minimal cost

of the solution plan of p among all the considered planners, otherwise. The IPC score

on a set of problems is given by the sum of the scores achieved on each considered

problem.

8.3. Experimental Results: The Learning Phase

As discussed in literature (Chrpa et al., 2013) structure of solution plans might

differ according to a planner that generated them and hence the set of inner en-

tanglements extracted from such plans can differ as well. In order to improve sets

of extracted inner entanglements (i.e., maximise the number of useful entangle-

ments and minimise the number of “peculiar” entanglements), we selected, for each

training problem, the best quality (shortest) plan from those produced by all the

considered planners. These best quality training plans were then used in the entan-

glement extraction method (see Section 7). Hereinafter, a set of inner entanglements

extracted by exploiting this approach will be denoted as the “best-plan set” of inner

entanglements.

Intuitively, using good quality training plans leads to extracting good quality

domain knowledge (inner entanglements in this case). To test this intuition, we

also considered the worst quality plans from those produced by all the considered

planners (hereinafter denoted as “worst-plan set” of inner entanglements).

50 COMPUTATIONAL INTELLIGENCE

The results of the learning phase are as follows:

• In Gripper, Rovers, Satellite and Spanner no inner entanglements have been ex-

tracted, i.e., both the best- and worst-plan sets are empty.

• In Depots, Parking, TPP, the best- and worst-plan sets are the same.

• In BlocksWorld (Bw), the worst-plan set is empty while the best-plan set is not

empty.

• In Barman, both the best- and worst-plan sets are not empty but different.

In the first case, the structure of the domain models prevents to capture any non-

trivial inner entanglements. In the second case, the quality of training plans does not

make any difference. This is due to the fact that the “important” part of training plans

structure does not change that much than the quality of these training plans and by

using the flaw ratio small structural changes of training plans are “absorbed”. The

third case refers to the situation where good quality plans usually follow the strategy

of putting blocks to the table while bad quality plans usually temporarily stack blocks

on other blocks. In the last case, the worst-plan set is a superset of the best-plan set.

Although such a result is counter-intuitive, we observed that in the Barman domain,

drinks can be prepared by using clean shots or by reusing “dirty” shots if the same

ingredient is put into them. Using always clean shots provide “narrower” structure

of solution plans, however, there plans are of worse quality since shots have to be

always cleaned. It should be noted that best- and worst-plan sets were different only

in 2 out of 9 domains. Although the work of Chrpa et al. (2013) indicates that the

differences should be larger, incorporating the filtering technique for unpromising

INNER ENTANGLEMENTS 51

inner entanglements (see Section 7.2) into the learning method “absorbs” some of

these differences.

8.4. Experimental Results: The Testing Phase

[Table 1 about here.]

The results shown in Table 1 demonstrate the positive impact of inner entan-

glements on the planning process. It can be seen that only Probe solved all original

testing problems in Bw and Depots. While inner entanglements (best-plan sets) were

considered, in Bw, Depots and TPP, some planners were able to solve all the testing

problems. In Parking and Barman, the results are mixed. In Parking, the overall

results are rather negative, in Barman, Probe (best-plan set) and Lama (worst-plan

set) benefit from inner entanglements while Mercury, on the other hand, has much

worse performance on inner entanglements enhanced problems. Assuming that we

can run all planners with original and inner entanglements enhanced domain models

in parallel, then by using inner entanglements we can solve 2 more problems in

Parking, and 3 more problems in Barman. Additionally, 9 problems in Barman can

be solved faster when inner entanglements are considered.

Whereas the results generally support the claim that inner entanglements can

effectively prune search space by eliminating unpromising alternatives, some results,

however, require more attention. Lama does not perform well for the best-plan set in

Bw, while it performs considerably well in the worst-plan set in Barman. This might

lead to an observation that Lama performs well in the worst-plan sets rather than

best-plan sets. We, however, believe that this observation is of domain and planner

specific nature and thus might not be generalized. The reason for Lama’s good

52 COMPUTATIONAL INTELLIGENCE

performance in the worst-plan set in Barman is in the fact that enforcing the planner

to use only clean shots makes the landmark-based heuristics more informative. On

the other hand, the best-plan set in Bw enforces the planner to put blocks on the table

before stacking them in goal positions. Lama, however, has already a good perfor-

mance on the original setting – its heuristics is well informed. Inner entanglements in

this case might introduce some sub-optimalities (as the quality results indicate) and

thus slow down the planning process of Lama. In Mercury’s case, we can observe

that it already performs well on the original Barman problems. Inner entanglements,

however, seem to introduce overheads and possibly make Mercury’s heuristics less

informative.

We have also observed that using good quality training plans is useful for the

learning process since the structure of the plans has less noise (e.g. redundant ac-

tions). Despite some results of Lama that contradicts the observation, we believe

that the “best-plan” strategy will be useful also in other learning based techniques

(e.g. generating macros).

8.5. Impact of Flaw Ratio and Filtering

[Table 2 about here.]

Table 2 provides a comparison of impact of the heuristics (flaw ratio, filtering)

on “quality” of learnt set of inner entanglements. Only the best-plan sets were con-

sidered for this comparison. Noticeably, in Parking and TPP the sets are the same

regardless of which heuristics is used or not and thus these domains are not listed

in Table 2. Also, planners that did not solve any task in any of the encodings in a

given domain are not listed in Table 2. The results provide clear evidence, mainly

INNER ENTANGLEMENTS 53

in Barman and Bw, that both heuristics – flaw ratio and filtering – are useful when

applied together.

Technically speaking, when only flaw ratio is considered, the set of inner entan-

glements is the superset or equal than the set of inner entanglements without con-

sidering flaw ratio. Filtering, on the other hand, removes possibly unpromising inner

entanglements from the learnt set. In other words, flaw ratio and filtering heuristics

provide a useful synergy for maximizing the potential of inner entanglements.

8.6. Discussion of Results

This subsection is devoted to discuss interesting aspects of the experimental

analysis results.

8.6.1. Summary of Performance Improvement. Inner entanglements eliminate

unpromising alternatives in the search space. As already discussed in the paper,

pruning power of inner entanglements is a key factor for their usefulness. Therefore,

we proposed a method for filtering inner entanglements whose pruning power is

small (see Section 7.2). Our experiments confirmed that the filtering method often

manage to filter out unpromising inner entanglements while keeping the promising

ones. Inner entanglements are efficient if exclusivity of both predicate achievement

and requirement between a pair of operators holds. The reason is mainly in the

compact and informative encoding (see Section 5). Such inner entanglements were

extracted in Bw (i.e. putting the block on the table always after it is unstacked),

in Depots (i.e. loading a crate always after it is lifted) and TPP (i.e. loading goods

always after buying it). Our experiments showed a performance improvement among

54 COMPUTATIONAL INTELLIGENCE

the planners in these domains. Such results indicate that inner entanglements have

a good potential for improvement. We have also identified a few cases where inner

entanglements have detrimental effect on planners (e.g. Mercury in Barman). As

discussed in Section 6.5, representation of inner entanglements has an impact on

heuristics computation. Generally speaking, despite pruning the search space, repre-

sentation of inner entanglements might introduce local minima of heuristic functions

that, in consequence, might have detrimental effect on planning engines since they

need to search more nodes to escape such minima.

8.6.2. Completeness Issues. As discussed earlier, our method for extracting in-

ner entanglements follows an assumption that a set of inner entanglements that holds

for a set of training planning tasks also holds for the whole class of planning tasks

(i.e., the testing ones). If this assumption does not hold for some tasks in the class

they become unsolvable if inner entanglements are enforced. We observed in our

experiments that the majority of reformulated tasks (by encoding inner entangle-

ments) was solved by at least one of the planners. In Barman and Parking, 5 and

16 reformulated tasks, respectively, have not been solved by any of the planners.

However, no evidence was obtained whether this was caused by their unsolvability

or whether these tasks were too hard for the planners. In other words, the planners

on these tasks run out of time or memory.

To alleviate the incompleteness issue we can try to solve the original task after

the reformulated one failed. Specifically, we run the planner on the reformulated

task, and if the task is considered unsolvable before the time limit is reached, then

we run the planner on the original task. Theoretically, unsolvability of a planning

INNER ENTANGLEMENTS 55

task can be identified in finite time if a complete planning engine is considered. In

practice, we can identify some unsolvable tasks in a little time if the reachability

analysis reveals that the goal cannot be reached (Bonet and Geffner, 1999). Since

we have not identified any unsolvable reformulated task in the given time limit, the

same results as for best-plan or worst-plan sets of entanglements would have applied

for the aforementioned approach. Alternatively, we can alleviate the incompleteness

issue by manually verifying the correctness of extracted inner entanglements or by

incorporating reformulated tasks along with original tasks into planning portfolios

such as PbP (Gerevini et al., 2014).

8.6.3. Improvement to the Quality of Plans Generated. In general, inner entan-

glements do not guarantee optimality of solution plans. Strengthening definitions of

inner entanglements to guarantee plans optimality is, of course, theoretically possi-

ble. Given the complexity results of “normal” inner entanglements, we can expect

the same for “optimal” inner entanglements. Using the approximation algorithm for

extracting inner entanglements on optimal training plans with zero flaw ratio might

extract some useful “optimal” inner entanglements. However, we believe that there

is a high risk of extracting incorrect “optimal” inner entanglements. For example,

the recently mentioned inner entanglements in the Depots domain are “optimal”

for problems where each crate must be delivered to a different location. If in some

problem a crate must be stacked on a different pallet but within the same location,

such inner entanglements will force the planner (even the optimal one) to extract sub-

optimal plans. Speaking about satisficing planning, these entanglements will prevent

planners to find a plan only if no truck is available. Such a problem is very atypical.

56 COMPUTATIONAL INTELLIGENCE

Hence, there is a very low risk of extracting incorrect “normal” inner entanglements

and similar observations can be made in other domains. Our experimental results

have not clearly indicated any case in which extracted set of inner entanglements did

not hold.

8.6.4. Relationship to other Pruning or Problem Reformulation Techniques.

Although there are several techniques based on pruning or problem reformulation

techniques (discussed in the Related Work section), inner entanglements are com-

plementary to these techniques. Pruning techniques are often an inseparable part

of advanced planning engines. We used several of such planning engines, which

were successful in the past IPCs, for our experiments. We demonstrated that inner

entanglements can often significantly improve their performance. Outer Entangle-

ments (Chrpa and Barták, 2009; Chrpa and McCluskey, 2012) prune unpromising

instances of planning operator according to their relations with initial or goal atoms.

Inner entanglements are complementary to outer entanglements as has already been

demonstrated in the previous work (Chrpa and McCluskey, 2012). Another well

known technique for reformulating domain models is learning macros. A recent

work introducing ASAP, a planner based on algorithm selection approach which

selects the best couple (planner,encoding) for a given domain, has shown that in-

ner entanglements and combination of outer and inner entanglements often outper-

formed macros (Vallati et al., 2014). Exploiting a natural property of inner entan-

glements, i.e., exclusivity of predicate achievement or requirement, has been also

used for generating macros (Chrpa et al., 2013). Such macros can be in some cases

beneficial, however, such an approach cannot be used in cases where operators in an

INNER ENTANGLEMENTS 57

inner entanglement relation cannot be applied consecutively. Inner entanglements

can support also other learning techniques that are used in planning. Roller (de la

Rosa et al., 2011) is a system that learns decision trees that are then used to guide

depth-first search. Combining Roller with entanglements (both inner and outer), such

a system is called Rollent, brought promising results as well (Fuentetaja et al., 2015).

9. CONCLUSIONS AND FUTURE WORK

In this paper we presented Inner Entanglements, that are relations between pairs

of planning operators and predicates such that an operator exclusively achieves a

predicate for another operator, or an operator exclusively requires a predicate from

another operator. To deal with the intractability of deciding a given inner entangle-

ment holds for a given planning task (see Section 6), we used an approximation

method for extracting “domain-specific” sets of inner entanglements from training

plans, solution plans of simple tasks. Inner entanglements can be encoded into do-

main models without extending the input language of a planner (see Section 5) and,

therefore, they can be understood and exploited as planner-independent knowledge.

Inner entanglements are able to considerably improve the planning process as

our experiments demonstrated. In Bw, Depots and TPP, the considerable perfor-

mance improvement was observed among almost all the planners. As discussed

before, inner entanglements are especially powerful if exclusivity of both predicate

achievement and requirement between a given pair of operators holds, which is the

case of Bw, Depots and TPP. Generally, inner entanglements have a good potential

58 COMPUTATIONAL INTELLIGENCE

for a performance improvement if they are not “clashing” with a given planning

technique, as demonstrated in Barman (Mercury) and Bw (Lama).

Pruning power of inner entanglements is a crucial aspect for their success. In

particular, we need to avoid creating them with rarely used operators, and when the

argument count of an entangled operator is higher than certain other operators in

the domain model (as explained in section 7.2). Incorporating the aforementioned

filtering technique into the inner entanglement learning method alleviated most of

the performance concerns raised in the previous works (Chrpa and McCluskey, 2012;

Chrpa and Vallati, 2013).

We identified several avenues for future research. Firstly, we believe that inner

entanglements can be considered directly in heuristics –rather than being encoded in

PDDL– by, for instance, penalising possibilities which violate these entanglements.

Secondly, we believe that inner entanglements can be encoded, for instance, in de-

cision trees or control rules. This might improve performance of related planners,

i.e., Roller (de la Rosa et al., 2011) or TALPlanner (Kvarnström and Doherty, 2000).

Thirdly, we will investigate in which cases deciding non-trivial inner entanglements

is tractable. Given the insights in the paper (see Section 6.4) we believe that by

analysing domain structure we can identify some useful inner entanglements in

polynomial time. Finally, given the encouraging spread of results among sets of

planners and domains, we intend to work towards including an inner entanglements

generating facility as part of a knowledge engineering workbench.

INNER ENTANGLEMENTS 59

Acknowledgments

The authors would like to acknowledge the use of the University of Huddersfield

Queensgate Grid in carrying out this work.

The research was partly funded by the UK EPSRC Autonomous and Intelligent

Systems Programme (grant no. EP/J011991/1).

REFERENCES

BACCHUS, FAHIEM, and FRODUALD KABANZA. 2000. Using temporal logics to express search control

knowledge for planning. Artificial Intelligence, 116(1-2):123–191. . http://dx.doi.org/10.1016/S0004-

3702(99)00071-5.

BÄCKSTRÖM, C., and B. NEBEL. 1995. Complexity results for SAS+ planning. Computational Intelli-

gence, 11:625–656.

BERNARD, D. E., E. B. GAMBLE, N. F. ROUQUETTE, B. SMITH, Y. W. TUNG, N. MUSCETTOLA, G. A.

DORIAS, B. KANEFSKY, J. KURIEN, W. MILLAR, P. NAYAL, K. RAJAN, and W. TAYLOR. 2000. Remote

agent experiment DS1 technology validation report. Technical report, Ames Research Center and JPL.

BLUM, A.L., and M.L. FURST. 1997. Fast planning through planning graph analysis. Artificial Intelli-

gence, 90(1-2):281–300.

BONET, B., and H. GEFFNER. 1999. Planning as heuristic search: New results. In Proceedings of European

Conference on Planning, ECP, pp. 360–372.

BOTEA, A., M. ENZENBERGER, M. MÜLLER, and J. SCHAEFFER. 2005. Macro-FF: Improving AI planning

with automatically learned macro-operators. Journal of Artificial Intelligence Research (JAIR), 24:581–

621.

BYLANDER, T. 1994. The computational complexity of propositional STRIPS planning. Artificial Intelli-

gence, 69:165–204.

CELORRIO, SERGIO JIMÉNEZ, PATRIK HASLUM, and SYLVIE THIEBAUX. 2013. Pruning bad quality causal

links in sequential satisfying planning. In ICAPS 2013 Workshop on Planning and Learning.

CHAPMAN, D. 1987. Planning for conjunctive goals. Artificial Intelligence, 32(3):333–377.

CHEN, Y., and G. YAO. 2009. Completeness and optimality preserving reduction for planning. In Proceedings

of International Joint Conference on Artificial Intelligence, IJCAI, pp. 1659–1664.

60 COMPUTATIONAL INTELLIGENCE

CHRPA, L. 2010. Generation of macro-operators via investigation of action dependencies in plans. Knowledge

Engineering Review, 25(3):281–297.

CHRPA, L., and R. BARTÁK. 2009. Reformulating planning problems by eliminating unpromising actions.

In Proceedings of Symposium on Abstraction, Reformulation, and Approximation, SARA, pp. 50–57.

CHRPA, LUKÁS, and THOMAS LEO MCCLUSKEY. 2012. On exploiting structures of classical planning

problems: Generalizing entanglements. In Proceedings of European Conference on Artificial Intelligence,

ECAI, pp. 240–245.

CHRPA, LUKÁS, and FAZLUL HASAN SIDDIQUI. 2015. Exploiting block deordering for improving planners

efficiency. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,

IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 1537–1543. http://ijcai.org/Abstract/15/220.

CHRPA, LUKÁS, and MAURO VALLATI. 2013. Revisiting inner entanglements in classical planning. In Pro-

ceedings of Scandinavian AI conference, SCAI, pp. 75–84.

CHRPA, LUKÁS, MAURO VALLATI, THOMAS LEO MCCLUSKEY, and DIANE E. KITCHIN. 2013. Generat-

ing macro-operators by exploiting inner entanglements. In Proceedings of Symposium on Abstraction,

Reformulation, and Approximation, SARA, pp. 42–49.

CHRPA, LUKÁS, MAURO VALLATI, and HUGH OSBORNE. 2013. Learnability of specific structural patterns

of planning problems. In Proceedings of International Conference on Tools with Artificial Intelligence,

ICTAI, pp. 18–23.

COLES, AMANDA, ANDREW COLES, ANGEL GARCÍA OLAYA, SERGIO JIMENEZ, CARLOS LINARES LOPEZ,

SCOTT SANNER, SUNGWOOK YOON, and OTHERS. 2012. A survey of the seventh international planning

competition (review). AI Magazine, 33(1):83–88.

COLES, A., M. FOX, and A. SMITH. 2007. Online identification of useful macro-actions for planning.

In Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling,

ICAPS, pp. 97–104.

DAWSON, C., and L. SIKLÓSSY. 1977. The role of preprocessing in problem solving systems. In Proceedings

of International Joint Conference on Artificial Intelligence, IJCAI, pp. 465–471.

DE LA ROSA, TOMÁS, SERGIO JIMÉNEZ CELORRIO, RAQUEL FUENTETAJA, and DANIEL BORRAJO. 2011.

Scaling up heuristic planning with relational decision trees. Journal of Artificial Intelligence Research

(JAIR), 40:767–813.

DOMSHLAK, CARMEL, JÖRG HOFFMANN, and MICHAEL KATZ. 2015. Red-black planning: A

new systematic approach to partial delete relaxation. Artificial Intelligence, 221:73–114. .

INNER ENTANGLEMENTS 61

http://dx.doi.org/10.1016/j.artint.2014.12.008.

DOMSHLAK, CARMEL, MICHAEL KATZ, and ALEXANDER SHLEYFMAN. 2012. Enhanced symmetry breaking

in cost-optimal planning as forward search. In Proceedings of the Seventeenth International Conference on

Automated Planning and Scheduling, ICAPS, pp. 343–347.

EMERSON, E. ALLEN, and A. PRASAD SISTLA. 1996. Symmetry and model checking. Formal Methods in

System Design, 9(1/2):105–131. . http://dx.doi.org/10.1007/BF00625970.

FOX, MARIA, and DEREK LONG. 1999. The detection and exploitation of symmetry in planning prob-

lems. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJ-

CAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pp. 956–961.

http://ijcai.org/Proceedings/99-2/Papers/041.pdf.

FOX, MARIA, and DEREK LONG. 2003. PDDL2.1: an extension to PDDL for expressing temporal planning

domains. Journal of Artificial Intelligence Research (JAIR), 20:61–124.

FUENTETAJA, RAQUEL, LUKÁŜ CHRPA, THOMAS L MCCLUSKEY, and MAURO VALLATI. 2015. Exploring

the synergy between two modular learning techniques for automated planning. In Eighth Annual Sympo-

sium on Combinatorial Search (SoCS), pp. 35–43.

GEREVINI, ALFONSO, ALESSANDRO SAETTI, and IVAN SERINA. 2003. Planning through stochastic local

search and temporal action graphs. Journal of Artificial Intelligence Research (JAIR), 20:239 – 290.

GEREVINI, ALFONSO, ALESSANDRO SAETTI, and MAURO VALLATI. 2014. Planning through automatic

portfolio configuration: The PbP approach. Journal of Artificial Intelligence Research (JAIR), 50:639–696.

. http://dx.doi.org/10.1613/jair.4359.

GHALLAB, M., C. KNOBLOCK ISI, S. PENBERTHY, D. E SMITH, Y. SUN, and D. WELD. 1998. PDDL - the

planning domain definition language. Technical report.

GHALLAB, MALIK, DANA S. NAU, and PAOLO TRAVERSO. 2004. Automated planning, theory and practice.

Morgan Kaufmann Publishers.

GODEFROID, PATRICE, and FRODUALD KABANZA. 1991. An efficient reactive planner for synthesizing

reactive plans. In Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA,

USA, July 14-19, 1991, Volume 2., pp. 640–645. http://www.aaai.org/Library/AAAI/1991/aaai91-100.php.

GUPTA, NARESH, and DANA S. NAU. 1992. On the complexity of blocks-world planning. Artificial

Intelligence, 56(2-3):223–254. . http://dx.doi.org/10.1016/0004-3702(92)90028-V.

HASLUM, PATRIK. 2007. Reducing accidental complexity in planning problems. In Proceedings of International

Joint Conference on Artificial Intelligence, IJCAI, pp. 1898–1903.

62 COMPUTATIONAL INTELLIGENCE

HOFFMANN, J. 2003. The Metric-FF planning system: Translating ”ignoring delete lists” to numeric state

variables. Journal Artificial Intelligence Research (JAIR), 20:291–341.

HOFFMANN, J., and B. NEBEL. 2001. The FF planning system: Fast plan generation through heuristic search.

Journal of Artificial Intelligence Research, 14:253–302.

HOFFMANN, J., J. PORTEOUS, and L. SEBASTIA. 2004. Ordered landmarks in planning. Journal of Artificial

Intelligence Research (JAIR), 22:215–278.

KAUTZ, H., and B. SELMAN. 1992. Planning as satisfiability. In Proceedings of European Conference on

Artificial Intelligence, ECAI, pp. 359–363.

KORF, R.E. 1985. Macro-operators: A weak method for learning. Artificial Intelligence, 26(1):35–77.

KVARNSTRÖM, J., and P. DOHERTY. 2000. TALplanner: A temporal logic based forward chaining planner.

Annals of Mathematics and Artificial Intelligence, 30(1-4):119–169.

LIPOVETZKY, NIR, and HECTOR GEFFNER. 2011. Searching for plans with carefully designed probes. In the

21st International Conference on Automated Planning and Scheduling (ICAPS-11), AAAI press, pp. 154–

161.

LIPOVETZKY, NIR, MIQUEL RAMIREZ, CHRISTIAN MUISE, and HECTOR GEFFNER. 2014. Width and

inference based planners: SIW, BFS(f), and PROBE. In The Eighth International Planning Competition.

Description of Participant Planners of the Deterministic Track, pp. 6–7.

MCCLUSKEY, T. L., and J. M. PORTEOUS. 1997. Engineering and compiling planning domain models to

promote validity and efficiency. Artificial Intelligence, 95(1):1–65.

MINTON, STEVEN. 1988. Quantitative results concerning the utility of explanation-based learning. In Proceed-

ings of AAAI Conference on Artificial Intelligence, pp. 564–569.

MINTON, S., and J. G. CARBONELL. 1987. Strategies for learning search control rules: An explanation-based

approach. In Proceedings of International Joint Conference on Artificial Intelligence, IJCAI, pp. 228–235.

NEWTON, M. A. H., J. LEVINE, M. FOX, and D. LONG. 2007. Learning macro-actions for arbitrary planners

and domains. In Proceedings of the Seventeenth International Conference on Automated Planning and

Scheduling, ICAPS, pp. 256–263.

NÚÑEZ, SERGIO, DANIEL BORRAJO, and CARLOS LINARES LÓPEZ. 2012. Performance analysis of planning

portfolios. In Proceedings of the Fifth Annual Symposium on Combinatorial Search, SOCS, pp. 65–71.

POCHTER, NIR, AVIV ZOHAR, and JEFFREY S. ROSENSCHEIN. 2011. Exploiting problem symmetries in state-

based planners. In Proceedings of AAAI Conference on Artificial Intelligence, pp. 1004–1009.

RICHTER, S., and M. WESTPHAL. 2010. The LAMA planner: guiding cost-based anytime planning with

INNER ENTANGLEMENTS 63

landmarks. Journal of Artificial Intelligence Research (JAIR), 39:127–177. ISSN 1076-9757.

RICHTER, SILVIA, MATTHIAS WESTPHAL, and MALTE HELMERT. 2011. LAMA 2008 and 2011. In Booklet

of the 7th International Planning Competition.

RINTANEN, JUSSI. 2003. Symmetry reduction for SAT representations of transition systems. In Proceedings of

the Thirteenth International Conference on Automated Planning and Scheduling (ICAPS 2003), June 9-13,

2003, Trento, Italy, pp. 32–41. http://www.aaai.org/Library/ICAPS/2003/icaps03-004.php.

RINTANEN, JUSSI. 2012. Engineering efficient planners with SAT. In Proceedings of European Conference on

Artificial Intelligence, ECAI, pp. 684–689.

RINTANEN, JUSSI. 2014. Madagascar: Scalable planning with SAT. In The Eighth International Planning

Competition. Description of Participant Planners of the Deterministic Track, pp. 66–70.

SACERDOTI, EARL D. 1975. The nonlinear nature of plans. In Advance Papers of the Fourth International

Joint Conference on Artificial Intelligence, Tbilisi, Georgia, USSR, September 3-8, 1975, pp. 206–214.

http://ijcai.org/Proceedings/75/Papers/028.pdf.

SIDDIQUI, FAZLUL HASAN, and PATRIK HASLUM. 2012. Block-structured plan deordering. In AI 2012:

Advances in Artificial Intelligence - 25th Australasian Joint Conference, Sydney, Australia, December 4-7,

2012. Proceedings, pp. 803–814.

SLANEY, J., and S. THIÉBAUX. 2001. Blocks world revisited. Artificial Intelligence, 125(1-2):119–153.

TOZICKA, JAN, JAN JAKUBUV, MARTIN SVATOS, and ANTONÍN KOMENDA. 2016. Recursive polyno-

mial reductions for classical planning. In Proceedings of the Twenty-Sixth International Conference

on Automated Planning and Scheduling, ICAPS 2016, London, UK, June 12-17, 2016., pp. 317–325.

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13088.

VALLATI, MAURO, LUKÁS CHRPA, and DIANE E. KITCHIN. 2014. ASAP: an automatic algorithm selection

approach for planning. International Journal on Artificial Intelligence Tools, 23(6):1–25.

VALMARI, ANTTI. 1996. The state explosion problem. In Lectures on Petri Nets I: Basic Models, Advances

in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl, September

1996, pp. 429–528. .

VIDAL, VINCENT. 2014. YAHSP3 and YAHSP3-MT in the 8th international planning competition. In The

Eighth International Planning Competition. Description of Participant Planners of the Deterministic Track,

pp. 64–65.

WEHRLE, MARTIN, MALTE HELMERT, YUSRA ALKHAZRAJI, and ROBERT MATTMÜLLER. 2013. The

relative pruning power of strong stubborn sets and expansion core. In Proceedings of the Seventeenth

64 COMPUTATIONAL INTELLIGENCE

International Conference on Automated Planning and Scheduling, ICAPS, pp. 251–259.

YOON, SUNG WOOK, ALAN FERN, and ROBERT GIVAN. 2008. Learning control knowledge for forward search

planning. Journal of Machine Learning Research, 9:683–718.

INNER ENTANGLEMENTS 65

FIGURE 1. Motivating example for inner entanglements, concretely entanglements
by preceding (left) and by succeeding (right). Whereas holding(B) can be achieved
by either pickup(B) or unstack(B A), for putdown(B) requiring holding(B), only
unstack(B A) is useful. Similarly, whereas holding(B) is required by either put-
down(B) or stack(B A), only stack(B A) is useful if holding(B) is achieved by
pickup(B).

66 COMPUTATIONAL INTELLIGENCE

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x)(ontable ?x)(handempty))
:effect (and (not (ontable ?x))(not (clear ?x))(not (handempty))

(holding ?x)(not (pick-up_stack_succ_holding ?x)))
)
(:action put-down
:parameters (?x - block)
:precondition (and (holding ?x)(pick-up_stack_succ_holding ?x))
:effect (and (not (holding ?x))(clear ?x)(handempty)(ontable ?x))
)
(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x)(clear ?y))
:effect (and (not (holding ?x))(not (clear ?y))(clear ?x)

(handempty)(on ?x ?y)(pick-up_stack_succ_holding ?x))
)
(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y)(clear ?x)(handempty))
:effect (and (holding ?x)(clear ?y)

(not (clear ?x))(not (handempty))
(not (on ?x ?y))(pick-up_stack_succ_holding ?x))

)

FIGURE 2. An example of the BlocksWorld operators reformulated by an entangle-
ment by succeeding (between pickup, stack and holding)

INNER ENTANGLEMENTS 67

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x)(ontable ?x)(handempty))
:effect (and (not (ontable ?x))(not (clear ?x))(not (handempty))

(holding ?x)(not (put-down_unstack_prec_holding ?x)))
)
(:action put-down
:parameters (?x - block)
:precondition (and (holding ?x)(put-down_unstack_prec_holding ?x))
:effect (and (not (holding ?x))(clear ?x)(handempty)(ontable ?x))
)
(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x)(clear ?y))
:effect (and (not (holding ?x))(not (clear ?y))(clear ?x)

(handempty)(on ?x ?y))
)
(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y)(clear ?x)(handempty))
:effect (and (holding ?x)(clear ?y)(not (clear ?x))(not (handempty))

(not (on ?x ?y))(put-down_unstack_prec_holding ?x))
)

FIGURE 3. An example of the BlocksWorld operators reformulated by an entangle-
ment by preceding (between unstack, put-down and holding)

68 COMPUTATIONAL INTELLIGENCE

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x)(ontable ?x)(handempty))
:effect (and (not (ontable ?x))(not (clear ?x))(not (handempty))

(stack_pick-up_both_holding ?x)(not (holding ?x)))
)
(:action put-down
:parameters (?x - block)
:precondition (and (holding ?x))
:effect (and (not (holding ?x))(clear ?x)(handempty)(ontable ?x))
)
(:action stack
:parameters (?x - block ?y - block)
:precondition (and (stack_pick-up_both_holding ?x)(clear ?y))
:effect (and (not (stack_pick-up_both_holding ?x))(not (clear ?y))

(clear ?x)(handempty)(on ?x ?y))
)
(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y)(clear ?x)(handempty))
:effect (and (holding ?x)(clear ?y)(not (clear ?x))(not (handempty))

(not (on ?x ?y))(not (stack_pick-up_both_holding ?x)))
)

FIGURE 4. An example of the BlocksWorld operators reformulated both entangle-
ments by preceding and succeeding between pick-up, stack and holding

INNER ENTANGLEMENTS 69

Coverage ∆ IPC Score - speed ∆ IPC score - quality
Planner O B W B W B W

Barman
FF 0 0 0 0.0 0.0 0.0 0.0
LPG 0 0 0 0.0 0.0 0.0 0.0
Lama 1 1 14 0.0 +13.4 0.0 +12.6
Probe 5 12 2 +7.5 -3.0 +7.1 -3.0
MpC 0 0 0 0.0 0.0 0.0 0.0
Yahsp 0 0 0 0.0 0.0 0.0 0.0
Mercury 25 21 2 -8.5 -24.1 -3.9 -23.5

Bw
FF 0 0 - 0.0 - 0.0 -
LPG 25 30 - +14.5 - +7.9 -
Lama 28 28 - -1.4 - -2.3 -
Probe 30 30 - +4.1 - +2.8 -
MpC 0 14 - +14.0 - +14.0 -
Yahsp 29 30 - +12.9 - -7.1 -
Mercury 19 29 - +11.0 - +7.0 -

Depots
FF 1 3 3 +2.3 +2.3 +1.8 +1.8
LPG 10 24 24 +16.7 +16.7 +14.1 +14.1
Lama 0 2 2 +2.0 +2.0 +2.0 +2.0
Probe 30 30 30 -3.2 -3.2 +2.0 +2.0
MpC 19 30 30 +17.6 +17.6 +11.3 +11.3
Yahsp 22 30 30 +18.7 +18.7 +20.8 +20.8
Mercury 0 0 0 0.0 0.0 0.0 0.0

Parking
FF 11 9 9 -3.0 -3.0 -2.2 -2.2
LPG 0 0 0 0.0 0.0 0.0 0.0
Lama 8 7 7 -2.4 -2.4 -0.7 -0.7
Probe 7 6 6 -0.9 -0.9 -0.8 -0.8
MpC 5 5 5 +0.4 +0.4 -0.1 -0.1
Yahsp 0 0 0 0.0 0.0 0.0 0.0
Mercury 8 7 7 -1.7 -1.7 -0.9 -0.9

TPP
FF 0 3 3 +3.0 +3.0 +3.0 +3.0
LPG 0 29 29 +29.0 +29.0 +29.0 +29.0
Lama 20 30 30 +20.3 +20.3 +10.3 +10.3
Probe 15 30 30 +23.6 +23.6 +14.7 +14.7
MpC 15 21 21 +14.1 +14.1 +6.0 +6.0
Yahsp 20 20 20 +1.7 +1.7 +0.0 +0.0
Mercury 26 30 30 +15.4 +15.4 +2.4 +2.4

TABLE 1. Comparing planners’ performance on (O)riginal and (B)est- and (W)orst-plan sets of inner
entanglements encodings. ∆ IPC Score refers to a difference of the IPC score between the reformulated and
the original encodings (positive values – higher score for the reformulated encoding). “-” means no inner
entanglements were produced.

70 COMPUTATIONAL INTELLIGENCE

Coverage ∆ IPC Score - speed ∆ IPC score - quality

Planner O N R F A N R F A N R F A

Barman

Lama 1 0 0 - 1 -1.0 -1.0 - 0.0 -1.0 -1.0 - 0.0
Probe 5 0 0 - 12 -5.0 -5.0 - +7.5 -5.0 -5.0 - +7.1
Mercury 25 0 0 - 21 -25.0 -25.0 - -8.5 -25.0 -25.0 - -3.9

Bw

LPG 25 - 1 - 30 - -24.4 - +14.5 - -24.1 - +7.9
Lama 28 - 0 - 28 - -28.0 - -1.4 - -28.0 - -2.3
Probe 30 - 0 - 30 - -30.0 - +4.1 - -30.0 - +2.8
MpC 0 - 0 - 14 - 0.0 - +14.0 - 0.0 - +14.0
Yahsp 29 - 21 - 30 - -14.0 - +12.9 - -27.2 - -7.1
Mercury 19 - 0 - 29 - -19.0 - +11.0 - -19.0 - +7.0

Depots

FF 1 1 3 1 3 +0.4 +2.3 +0.4 +2.3 -0.1 +1.8 -0.1 +1.8
LPG 10 18 24 18 24 +8.0 +16.7 +8.0 +16.7 +6.5 +14.1 +6.5 +14.1
Lama 0 0 2 0 2 0.0 +2.0 0.0 +2.0 0.0 +2.0 0.0 +2.0
Probe 30 27 30 27 30 -9.3 -3.2 -9.3 -3.2 -6.7 +2.0 -6.7 +2.0
MpC 19 30 30 30 30 +16.2 +17.6 +16.2 +17.6 +13.2 +11.3 +13.2 +11.3
Yahsp 22 30 30 30 30 +18.7 +18.7 +18.7 +18.7 +23.0 +20.8 +23.0 +20.8

TABLE 2. Comparing planners’ performance on (O)riginal, (N)o flaw ratio nor filtering, Flaw (R)atio
only, (F)iltering only, (A)ll (flaw ratio and filtering) on the best-plan sets of inner entanglements encodings. ∆
IPC Score refers to a difference of the IPC score between the reformulated and the original encodings (positive
values – higher score for the reformulated encoding). “-” means no inner entanglements were produced.

