Using drift diffusion modelling to understand inattentive behaviour in preterm and term-born children

Jenny Retzlera1, Chris Retzlera1, Madeleine Groomb, Samantha Johnsonc, Lucy Craggd.

a Department of Psychology, School of Human and Health Sciences, University of Huddersfield, UK
b Division of Psychiatry & Applied Psychology, School of Medicine, University of Nottingham, UK
c Department of Health Sciences, University of Leicester, UK
d School of Psychology, University of Nottingham, UK

1 These authors contributed equally to this work.

\textbf{Correspondence to:}

Dr Jenny Retzler, Department of Psychology, School of Human and Health Sciences, University of Huddersfield, UK

j.retzler@hud.ac.uk

\textbf{Acknowledgements:}

We would like to thank the families who participated, without whom this would not have been possible, and Valerie Astle and Helen Budge for their help identifying eligible VP patients. This work was supported by the Economic and Social Research Council (grant number 1230421).

\textbf{Conflict of interest:} The authors declare that they have no conflict of interest.

\textbf{This is the authors’ accepted manuscript. The final published version will appear in Neuropsychology.}
Abstract

Objective: Children born very preterm are at increased risk of inattention, but it remains unclear whether the underlying processes are the same as in their term-born peers. Drift diffusion modelling (DDM) may better characterise the cognitive processes underlying inattention than standard reaction time (RT) measures. This study used DDM to compare the processes related to inattentive behaviour in preterm and term-born children.

Method: Performance on a cued continuous performance task was compared between 33 children born very preterm (VP; ≤32 weeks’ gestation) and 32 term-born peers (≥37 weeks’ gestation), aged 8-11 years. Both groups included children with a wide spectrum of parent-rated inattention (above average attention to severe inattention). Performance was defined using standard measures (RT, RT variability and accuracy) and modelled using a DDM. A hierarchical regression assessed the extent to which standard or DDM measures explained variance in parent-rated inattention and whether these relationships differed between VP and term-born children.

Results: There were no group differences in performance on standard or DDM measures of task performance. Parent-rated inattention correlated significantly with hit rate, RT variability, and drift rate (a DDM estimate of processing efficiency) in one or both groups. Regression analysis revealed that drift rate was the best predictor of parent-rated inattention. This relationship did not differ significantly between groups.

Conclusions: Findings suggest that less efficient information processing is a common mechanism underlying inattention in both VP and term-born children. This study demonstrates the benefits of using DDM to better characterise atypical cognitive processing in clinical samples.
Keywords: Attention; Very preterm; Drift diffusion model; Information processing

Public significance statements:

1. Less efficient information processing during a sustained attention task explained individual differences in inattentive behaviour. This was true both in 8-to-11-year-olds born very preterm and their term-born peers.

2. Drift diffusion modelling provides a way to help us better characterise the processes that underlie task performance. This is valuable for understanding processing differences that affect clinical groups.
Introduction

One of the most common adverse outcomes from very preterm (VP; <32+0 weeks’ gestation) birth is attention-deficit/hyperactivity disorder (ADHD; Johnson & Marlow, 2011; Linnet et al., 2006), a condition characterised by developmentally inappropriate and functionally impairing levels of inattention and/or hyperactivity-impulsivity. Risk for ADHD in the VP population is 2-3 times greater than for children born at term (Johnson & Marlow, 2011). Notably, VP children are at significantly greater risk for inattentive symptoms than hyperactivity/impulsivity (Ask et al., 2018; Brogan et al., 2014), and mean symptom scores are significantly elevated even where children do not meet the threshold for diagnosis (Jaekel, Wolke, & Bartmann, 2013; Johnson et al., 2016; Johnson & Marlow, 2011). Given evidence showing that inattentive symptoms predict academic underachievement in both VP (Jaekel et al., 2013) and general population samples (Sayal, Washbrook, & Propper, 2015), and that inattention in the VP population persists into adulthood (Ask et al., 2018; Breeman, Jaekel, Baumann, Bartmann, & Wolke, 2016), inattention can be characterised as a core, lifelong impairment following VP birth. Increasing understanding of the processing deficits underlying inattentive symptoms may improve the ability to detect impairment and trial the suitability of interventions, to, ultimately, improve long-term outcomes for individuals born VP.

While ADHD in the general population is by and large recognised as the result of a gene-environment interaction (Faraone et al., 2005), it is thought that the increased risk for inattention in VP children arises as a result of aberrant neurodevelopment due to birth at very preterm gestations (Lindström, Lindblad, & Hjern, 2011). Specifically, there is evidence of atypical structural neural connectivity and white matter development, even in VP children who do not show major brain injury or impairment (Ment, Hirtz, & Hüppi, 2009), and
associations have been observed between atypical white matter development and inattention in adolescents born VP (Skranes et al., 2007). With potentially differing initial causal factors, the mechanisms underlying inattentive symptoms in children born very preterm may be different from those in term-born children with ADHD. Exploring possible differences in these underlying mechanisms would inform theories that have postulated a ‘pure’ form of inattention associated with VP birth (Hille et al., 2001). It would also be of clinical importance, with implications as to whether interventions currently available to treat ADHD are suitable in the VP population.

Slower and more variable response times (RTs) in speeded reaction time tasks have traditionally been considered as markers of poor attention, having been shown to differentiate between children with and without ADHD and to correlate with symptoms of inattention (e.g. (Castellanos & Tannock, 2002; Hervey et al., 2006; Leth-Steensen, Elbaz, & Douglas, 2000; Uebel et al., 2010; Vaurio, Simmonds, & Mostofsky, 2009). Despite vastly increased measurement accuracy since the introduction of software with millisecond timing, standard RT measures remain limited in scope. Individual differences in RT may be attributable to differences in the speed of stimulus perception, decision-making, or the motor response. As such, the precise source of variation cannot be determined using standard RT metrics and the reliance on these measures may fail to identify specific cognitive processes underlying inattention. Moreover, if interactions between the different component processes have opposing effects on RTs, for example, if inattentive children process information slowly, but make fast and impulsive decisions, while attentive children process information quickly but make slower decisions, the resulting RTs may mask the underlying processing differences.

The drift diffusion model (DDM; see Figure 1 for a graphical representation) uses intra-individual variability in RT and accuracy across trials to isolate underlying cognitive processes. The model assumes that the decision to make a response is a cumulative process in
which noisy sensory information is gathered in favour of each response option, from a given starting point, until a decision threshold is reached (Ratcliff & McKoon, 2008). While the ‘full’ DDM provides estimates of drift rate, boundary separation, non-decision time, starting point, and trial-to-trial variabilities in drift rates, non-decision time and starting point, the complexity of this model, both in terms of the structure of input data required and parameter fitting, reduces its applicability to many datasets, including that in the current study. A simplified version of the model (the EZ-DDM) has been developed that provides estimation of the most cognitively relevant of these parameters; drift rate, boundary separation and non-decision time (Wagenmakers et al., 2007). Drift rate reflects the rate of information processing over time, referred to as information processing efficiency, as demonstrated by studies reporting lower drift rates in more difficult tasks compared to simpler tasks (Ratcliff & McKoon, 2008). Boundary separation reflects the speed-accuracy trade-off, or impulsivity, of the participant (Metin et al., 2013; Wiecki, Sofer & Frank, 2013). When this threshold is low, the participant makes decisions after accumulating only a small amount of information, meaning decisions will be fast but less accurate, reflecting impulsivity, and when this threshold is high, the participant requires more information before making decisions, meaning they will be more accurate but slower, reflecting conservatism. Non-decision time provides a measure of the non-cognitive elements of decision making such as encoding and response processes.
Use of DDM in clinical samples has demonstrated how this approach can alter the conclusions that would have been drawn using standard RT and accuracy measures alone (Pirrone, Dickinson, Gomez, Stafford, & Milne, 2017; Zhang, 2012). For example, Pirrone et al. (2017) used DDM analysis to show that despite slower responses by patients with Autism Spectrum Disorder (ASD) on an orientation discrimination task, perceptual sensitivity was not impaired in this group, though behavioural data in isolation would have suggested it was.

Given the correspondence between the DDM measures and processes that have long been implicated in attentional processing, such as response speed, impulsivity and response preparation, it is, perhaps, unsurprising that DDM has been used to assess impaired processing in ADHD. Analyses using case-control paradigms have consistently identified low
drift rates as the primary explanation of group differences in task performance across a range of RT tasks, indicating that individuals with ADHD show less efficient processing. For example, Karalunas, Huang-Pollock, & Nigg (2012) found that group differences in RTs on a Stop task were explained by drift rate, rather than boundary separation (speed-accuracy trade-offs) or non-decision processes such as response preparation. Similarly, Metin et al., (2013) found that those with ADHD showed lower drift rates and less non-decision time but no difference in boundary separation in both a simple choice RT task and a conflict control task, concluding that the RT differences in ADHD reflect inefficient information accumulation, rather than impulsive processing. Finally, Weigard & Huang-Pollock (2014) showed that in a contextual cueing task, individuals with ADHD, again, showed lower drift rates compared to controls, but also less flexibility in boundary separation.

To our knowledge, research into inattention using the DDM approach has been limited to case-control studies of ADHD to date, without thorough investigation of the extent to which the cognitive processes isolated by DDM can predict variation in symptom severity, nor investigation of the relationship of the parameters to particular symptom domains. Moreover, DDM has never before been used to investigate processing in individuals born VP, a population at risk for attentional deficits. Emerging evidence indicates that although many of the mechanisms underlying inattention are the same in term and VP samples, there may be specific deficits in processing speed that contribute to inattentive symptoms in children born VP (Mulder, Pitchford, & Marlow, 2011; Retzler et al., 2019). The evidence from these analyses is limited by the response and domain-specificity of the tasks, thus measures more sensitive to elucidating the underlying cognitive processes, such as DDM, may be useful to further understand how processing may relate to inattentive symptoms.

The current study investigates the value of DDM measures to further elucidate the cognitive mechanisms underlying inattention in VP and term-born children. A cued continuous
performance task (CPT-AX), in which responses are required to infrequent cue-target sequences among distractor stimuli, was used to measure sustained attention. CPTs are known to be sensitive to the behavioural deficits observed in children with ADHD (Huang-Pollock, Karalunas, Tam, & Moore, 2012; Riccio & Reynolds, 2001), and studies have shown that task performance measures are best predicted by inattentive symptoms rather than hyperactive-impulsive symptoms (Chhabildas, Pennington, & Willcutt, 2001). To date, studies using CPTs to assess individuals born preterm have demonstrated poorer sustained attention in VP children relative to term-born controls (Mulder, Pitchford, Hagger, & Marlow, 2009), and shown that poorer task performance was associated with higher ADHD symptoms in VP adolescents (Rommel et al., 2017), but have not focussed on associations between task performance and inattention specifically.

In order to facilitate the detection of correlates of inattention within both groups of children, and to directly compare these correlates between groups, term-born children were not recruited using a typical case-control approach. Instead, both groups were recruited to include children with a wide range of inattentive symptoms, as rated by their parents, ranging from above average attention to severe inattention (see supplementary material and Retzler et al., 2019 for details). Accordingly, a dimensional measure of inattentive symptoms suitable for use in non-clinical samples and sensitive to the full range of attention scores was selected to capture the full range of these traits in both groups (the Strengths and Weaknesses of ADHD and Normal-behaviour; SWAN; Polderman et al., 2007; Swanson et al., 2012).

Given that inattention is one of the core deficits in ADHD, it was predicted that, in line with previous studies in ADHD groups, drift rate would explain significant variance in inattention. As the first study to isolate cognitive components using DDM within a VP sample, our second hypothesis was two-tailed; we predicted that either inattention would be explained by
the same DDM parameters in both groups, or that groups would differ on one or more parameters.

Method

Ethical Standards

Ethical approval was granted by a UK NHS Research Ethics Committee (Coventry and Warwickshire; Ref: 13/WM/0203) and informed parental consent was obtained for all children.

Participants

Sample recruitment is described in detail in Retzler et al. (2019) and a full description of all children tested is presented in the supplementary material. In brief, following identification from hospital records and tracing of all babies born VP (≤32 weeks’ gestation) and admitted for neonatal intensive care in Nottingham University Hospitals NHS Trust, 65 children were recruited (16% of eligible births) to the study. As a comparison group, 48 term-born children (≥37 weeks’ gestation) were then recruited from the same geographical area, using advertisements distributed via local schools and in the community, as well as the University of Nottingham volunteer database. This was a two-stage process that screened for inattentive symptoms using the parent-rated SWAN scale (stage 1), before inviting families to participate in the full study (stage 2). This process ensured that the seven points on the SWAN scoring scale were represented in the term-born children, reflecting a range of attentional abilities (far below average, below average, slightly below average, average, slightly above average, above average, and far above average).

The sub-sample for the current analysis comprised all children with available task data suitable for the DDM analysis (see supplementary material for full explanation of why data for some children were unavailable). 10 children in each group achieved a 100% hit rate,
which prevents calculation of DDM parameters and rendered their data unsuitable for the analysis. This resulted in a sub-sample of 32 term-born children and 33 children born very preterm aged 8-11 years. Comparisons of the children included in the DDM analysis with those not included, revealed no differences in gestational age at birth, sex, ethnicity, socio-economic status (as measured using the English Indices of Multiple Deprivation (McLennan et al., 2011)), IQ, or scores of parent-rated inattention and hyperactivity ($p>0.1$ in all cases; see supplementary material).

Moreover, the VP children in the sub-sample for this analysis did not differ significantly from the wider eligible VP children ($n = 374$; excluded either due to non-recruitment to the study, or due to unsuitable data for the DDM) with respect to gestational age ($p = 0.34$), birthweight ($p = 0.46$), sex ($p = 0.41$), or socio-economic status, ($p=0.19$).

Experimental task

Children were asked to complete a CPT-AX programmed using PsychoPy software (Peirce, 2007) while electroencephalography (EEG) measurements were recorded as the last part of a test battery (EEG data not reported here). Children were seated at a desk in a quiet, unlit room facing a computer screen while wearing the EEG recording cap. An experimenter remained with them in the testing room at all times.

At the start of the task written instructions appeared on the screen to familiarise the children with the stimuli that represented cues and targets. The stimuli consisted of black abstract shapes (chosen so that they did not have a verbal label) filled with different patterns presented on a grey background (see Figure 2). One stimulus was designated as the target stimulus (in CPT-AX nomenclature, this represents the X stimulus) and one stimulus as the cue stimulus (in CPT-AX nomenclature, this represents the A stimulus). The same shapes were designated as cue and target for all children. The instructions were read out by the
experimenter who told each child that they were required to respond as quickly as possible when they saw a cue-target sequence. They were informed that the cue shapes and target shapes might also appear in isolation and it was reiterated that it was only when they saw a cue-target sequence in the specified order that they needed to respond.

Figure 2: Schematic showing a cue-target sequence for the CPT-AX task.

A continuous stream of stimuli was presented in the centre of the screen. Each stimulus was presented for 250ms separated by an inter-stimulus interval of 1400ms, during which a central fixation cross was displayed (see Figure 2). A cue-target ‘go’ (A-X) trial was defined as a trial-pair where the stimuli designated as the cue and target were presented consecutively. Each time the child saw the target stimulus sequentially following the cue stimulus, they were required to respond as quickly as possible pressing the left-most button on a Cedrus RB-730 button box with their right hand. Children were instructed to keep their finger over the response button so that they could respond as quickly as they could. No response was required to other trial types, including those where the cue and target were presented in isolation from one another.
The task consisted of 4 blocks of 100 trials, with the cue stimulus, target stimulus and 11 different distractor stimuli presented. Trials were presented in a pseudorandomised order, with different orders for each block, but identical orders across participants. ‘Go’ (A-X) cue-target sequences were presented 10 times within each block, as were cue-without-target ‘no-go’ trials (A-not-X), and uncued-target ‘no-go’ (X-not-A) trials. On ‘go’ trials, participants were required to respond within 1650ms of stimulus onset (prior to the presentation of the subsequent stimulus) to be considered ‘correct’.

Standard task performance measures

Hit rate. The total number of correct hits (responses made within 200-1650ms from the onset of a cued target) was summed as a measure of accuracy. This was reported as a percentage of correct hits out of the maximum score of 40. Higher scores represent more accurate performance, and thus better attention.

Commission errors. The total number of responses made on ‘no-go’ trials (any trial other than a cued target) was summed as a measure of commission errors. This was reported as a percentage of erroneous responses out of the 360 ‘no-go’ trials (error rates were too low to permit differentiation between type of ‘no-go’ trial). Higher scores represent less accurate performance and therefore greater impulsivity.

Response time. The mean response time on correct hit (A-X) trials was calculated as a measure of response speed. Higher values represent slower response speed.

Response time variability. Finally, the standard deviation of response time on correct hit trials was calculated as a measure of response speed variability. Higher values represent greater variability in response speed.

Participant characteristics and clinical symptoms
An age-standardized estimate of full scale IQ (FSIQ-2) was calculated from the Wechsler Abbreviated Scale for Intelligence (Wechsler, 1999) using the vocabulary and matrices subtests. Inattentive and hyperactive-impulsive behaviours were measured using the raw scores on the SWAN rating scale (Swanson et al., 2012) a parent-report measure of a child’s ADHD symptoms. This scale has been considered appropriate for use in community populations (Swanson et al., 2012) as it allows measurement of variation in above average attention in addition to below average attention (more severe inattention; Arnett et al., 2013). To characterise inattention and hyperactivity in more clinical terms, measures of symptoms and risk of ADHD were assessed using the Conners 3-P (Conners, 2008), with higher scores indicating greater symptoms. Children with scores above the predefined clinical cut-off were classified as “at risk” of diagnosis.

Diffusion model fitting

In light of the infrequent target stimuli in this task and consequent low trial numbers (n=40), as well as the fact that error rates on ‘go’ trials were low, the EZ-DDM (Wagenmakers et al., 2007) was used. The EZ-DDM is a simplified version of the full drift diffusion model and is ideal for use both with small numbers of trials, and with low numbers of error rates (Wagenmakers, van der Maas, Dolan, & Grasman, 2008).

The EZ-DDM (Wagenmakers et al., 2007) was fitted to the ‘go’ RT and accuracy data from our task using custom R scripts (Wagenmakers provides customisable scripts for R here: https://www.ejwagenmakers.com/2007/EZ.R). The EZ-DDM transforms a participant’s overall accuracy, mean RT and variance in RT using three equations derived from the full DDM (see Wagenmakers et al. (2007) for a more detailed description of the procedure). This simplification allows calculation of the most cognitively salient DDM measures without complex parameter fitting procedures often requiring large numbers of trials. This comes at the cost of a more detailed account of behaviour provided by the full DDM which includes
measures of cross-trial variability and starting point. For the purposes of EZ-DDM, such parameters are kept constant.

The EZ-DDM provides estimates of drift rate, boundary separation, and non-decision time parameters for each participant. For drift rate, a higher value indicates that more information is processed per unit of time (higher drift rate indicates more efficient information processing); for boundary separation, a higher value indicates greater separation between decision boundaries and thus a more conservative approach to decision making based on greater evidence accumulation, conversely a lower value suggests an impulsive decision. Finally, for non-decision time, a higher value indicates greater time spent encoding the stimuli and preparing and executing responses.

Prior to fitting, response times below 200ms were rejected as these are likely to reflect anticipatory responses from participants prior to cognitive processing of the current stimuli (Ratcliff & McKoon, 2008).

To test the goodness of fit of the DDM model, 1000 trials for each group were simulated using the ‘multisimul’ function in the DMAT toolbox for MATLAB. The simulated data were created using model parameters (drift rate, boundary separate, non-decision time) averaged across individuals within each group to create mean parameters. Using these parameters, DMAT was used to create two simulated super-subjects. The mean RTs and accuracy from the observed data were then compared with those of our simulated data.

Statistical Analysis

As children in both groups presented with a range of levels of parent-rated inattention, group differences in cognitive performance were not expected, but were analysed to provide context. Group differences in CPT-AX performance were examined using a MANCOVA.
with group (term-born or VP) as the between-subjects factor and age entered as a covariate as this differed between groups.

To assess the pattern of association between parent-rated inattention and task performance and DDM measures, first partial correlations controlling for age were performed, both across groups and split by group. Next, in order to assess the independent contribution of these variables for explaining the variance in parent-rated inattention, any task performance or DDM measure that showed a significant correlation with parent-rated inattention in either term-born or VP children was entered into a hierarchical multiple regression, with parent-rated inattention as the dependent variable. Group and age were entered into the first step, and hit rate, RT variability and drift rate were entered in the second step. Due to high intercorrelations between task performance and DDM measures (see supplementary material), when these were entered in the second step, a data-driven stepwise-entry selection technique was used so that only those variables that added significant variance above and beyond that accounted for in the preceding steps were entered. This approach has been used previously (Aarnoudse-Moens, Weisglas-Kuperus, Duivenvoorden, Goudoever, & Oosterlaan, 2013) to better separate out effects amongst variables that are inter-related. In order to investigate any group-specific effects, group interaction terms were included as predictor variables in a regression analysis. However, to assess whether the interaction terms explained additional variance while accounting for the loss of any task performance or DDM measures in the second step of the analysis due to the use of stepwise-entry variable selection, a separate regression analysis was conducted using forced entry technique at all steps, in which group interaction terms were added in a final step.

Results

Sample characteristics
A full comparison of sample characteristics between VP and term-born children included in the DDM analysis are provided in the supplementary material (Table SA1), with key features summarised in Table 1 below. Compared with term-born children, VP children were significantly older (\(p=0.031\)) and had significantly lower IQ (VP: \(M = 99.2\) points, \(SD = 14.0\) points; Term: \(M = 111.6\), \(SD = 9.7\) points; \(p<0.001\)) but were well-matched on most other variables (see Table SA1). In spite of both samples including children with a large range of scores on the SWAN inattention scale, VP children had significantly more severe parent-rated inattention, than those in the term-born sample (VP: \(M = -0.70\), \(SD = 9.89\); Term: \(M = -6.58\), \(SD = 12.23\); \(p=0.038\)). That noted, while there were high correlations between Conners 3-P ratings of inattention and hyperactivity and SWAN ratings of inattention and hyperactivity (inattention \(r=0.78\), \(p<0.001\); hyperactivity \(r=0.71\), \(p<0.001\)), there were no differences between groups in the number of children scoring ‘at risk’ according to clinical cut-offs for DSM ADHD diagnoses on the Conners 3-P.

Table 1: Characteristics of term-born and very preterm children.

<table>
<thead>
<tr>
<th>Participant demographics</th>
<th>Very Preterm</th>
<th>Term</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age at birth (weeks)(^a); Mean (SD)</td>
<td>29.6 (1.9)</td>
<td>40.0 (1.2)</td>
<td>-</td>
</tr>
<tr>
<td>Birth weight (kg); Mean (SD)</td>
<td>1.40 (0.47)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Age at assessment (years); Mean (SD)</td>
<td>9.6 (1.0)</td>
<td>9.1 (1.1)</td>
<td>0.031*</td>
</tr>
<tr>
<td>Sex; % female</td>
<td>45.5</td>
<td>40.6</td>
<td>0.694 n.s.</td>
</tr>
<tr>
<td>Conner’s 3 scores above clinical cut offs for DSM ADHD/I; (n(%))</td>
<td>12 (36.4%)</td>
<td>7 (21.9%)</td>
<td>0.199 n.s.</td>
</tr>
<tr>
<td>Conner’s 3 scores above clinical cut offs for DSM ADHD/C; (n(%))</td>
<td>10 (30.3%)</td>
<td>10 (31.3%)</td>
<td>0.934 n.s.</td>
</tr>
</tbody>
</table>

Note: SD = standard deviation. \(^a\) 5 children (15.2\%) in the VP sample were born at gestations of fewer than 28 weeks, meeting criteria for extremely preterm birth. \(*p<0.05, n.s.\) = not significant.

Model fit
Our simulation showed that the model fit the data well with little difference between the simulated and observed data for either group (Figure 3; RT quantiles are presented in Figure SA1 in the supplementary material for further detail).

Figure 3: Comparison of simulated (light grey) and observed data. A shows mean percent accuracy for the VP and term born children. B shows the mean reaction time for correct responses for each group. Error bars are the standard error of the mean.

Between-group differences in task performance

Using Pillai’s Trace, multivariate tests showed that there was no significant effect of age (V=0.121, F(7.56)=1.104, p=0.373) or group (V=0.102, F(7.56)=0.913, p=0.504) on CPT-AX performance using either standard or DDM measures, therefore no univariate tests were conducted.

Table 2: Age adjusted marginal means and standard errors (SE) for performance measures of term-born and very preterm children.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Very Preterm</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commission errors (%)</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Hit rate(^a) (%)</td>
<td>88.3</td>
<td>84.6</td>
</tr>
<tr>
<td>RT(^a) (ms)</td>
<td>478</td>
<td>492</td>
</tr>
<tr>
<td>RT variability (ms)</td>
<td>168</td>
<td>169</td>
</tr>
<tr>
<td>Drift rate</td>
<td>.211</td>
<td>.191</td>
</tr>
<tr>
<td>Boundary separation</td>
<td>.112</td>
<td>.112</td>
</tr>
<tr>
<td>Non-decision time</td>
<td>.253</td>
<td>.267</td>
</tr>
</tbody>
</table>

\(^a\) See Figure SA2 in supplementary material for a graphical representation of RT and accuracy quantiles by group.
Relationships with parent-rated inattention

Partial correlations between task performance and DDM parameters and parent-rated inattention showed that across groups higher levels of inattention were associated with poorer hit rate, increased RT variability and a lower drift rate. The same pattern of findings was observed in both groups, although the correlation between RT variability and inattention did not reach significance in the VP group. Fisher’s comparison confirmed that there were no significant differences in the magnitude of correlations between groups for hit rate ($z = 0.22$, $p = 0.83$), RT variability ($z = -1.35$, $p = 0.18$) or drift rate ($z = 0.32$, $p = 0.75$). Full correlations between all task performance and DDM parameters and inattention are presented in the supplementary material.

Table 3. Partial correlations between parent-rated inattention and task-performance.

<table>
<thead>
<tr>
<th></th>
<th>Inattention</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Collapsed</td>
<td>Very Preterm</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>Across Groups</td>
<td>$N=64^a$</td>
<td>$N=33$</td>
</tr>
<tr>
<td>Commission errors</td>
<td>0.241</td>
<td>0.167</td>
<td>0.319</td>
</tr>
<tr>
<td>Hit rate</td>
<td>-0.350**</td>
<td>-0.369*</td>
<td>-0.418*</td>
</tr>
<tr>
<td>Response time</td>
<td>0.152</td>
<td>0.126</td>
<td>0.210</td>
</tr>
<tr>
<td>RT variability</td>
<td>0.318*</td>
<td>0.163</td>
<td>0.475**</td>
</tr>
<tr>
<td>Drift rate</td>
<td>-0.369**</td>
<td>-0.364*</td>
<td>-0.435*</td>
</tr>
<tr>
<td>Boundary separation</td>
<td>0.021</td>
<td>-0.128</td>
<td>0.136</td>
</tr>
<tr>
<td>Non-decision time</td>
<td>-0.107</td>
<td>0.004</td>
<td>-0.159</td>
</tr>
</tbody>
</table>

Note: All correlations have been controlled for the effect of age. *$p<0.05$, **$p<0.01$, ***$p<0.001$. *SWAN Inattention was not measured for 1 term-born participant
The results of the hierarchical stepwise regression are reported in Table 4. Age and group alone did not explain significant variance in parent-rated inattention ($F(2,61)=2.522$, $p=0.089$). The model was significantly improved with the addition of task-performance measures ($\Delta R^2 = 0.153$, $p=0.001$), though only drift rate contributed enough unique variance to be entered into Model 2, which explained 22.9% of the variance in inattention (Model 2; $F(3,60)=5.956$, $p=0.001$). Notably, with the inclusion of task-performance measures, group also explained significant unique variance in this model.

Finally, group-specific effects were assessed by conducting a separate regression analysis which used a forced entry variable selection technique throughout and added interaction terms in a third step. Addition of group-interaction terms did not explain significantly more variance than was explained by task performance and DDM measures alone, ($\Delta R^2 = 0.039$, $p=0.374$), and none of the group interaction terms explained unique variance, thus no further analyses of group-specific effects were conducted and Model 2 (see Table 4) was accepted as the final model.

Table 4: Regression model for cognitive predictors of parent-rated inattention

<table>
<thead>
<tr>
<th>Predictor</th>
<th>β</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>.230</td>
<td>.277*</td>
</tr>
<tr>
<td>Age</td>
<td>.099</td>
<td>.159</td>
</tr>
<tr>
<td>Drift rate</td>
<td></td>
<td>-.401***</td>
</tr>
<tr>
<td>Hit rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT variability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *$p<0.05$; **$p<0.01$; ***$p<0.001$. - = did not meet criteria for stepwise entry model selection.
Figure 4: Scatter plot showing the association between parent-rated inattention and the drift rate parameter of the drift diffusion model for term and very preterm groups. Inattention scores of zero reflect an average level of attentive behaviour, positive scores reflect a poorer than average level of inattentive behaviour, and negative scores reflect an above average level of attentive behaviour. Higher drift rate scores reflect processing of a greater amount of information per unit of time in favour of the ‘go’ response (i.e. more efficient processing).

Discussion

The aim of the current study was to explore the value of DDM measures for understanding the cognitive mechanisms underlying inattention in VP and term-born children. Unlike in a typical case-control study, we did not necessarily expect task performance differences between groups due to the range of attentional abilities of the children included in both groups, and the fact that they were well-matched for number of children with clinically-relevant ADHD symptoms. Indeed, the groups did not differ on standard task performance metrics, nor on DDM measures. Across groups, more severe parent-rated inattention was associated with a lower hit rate, more variability in response time, and, as hypothesised, a lower drift rate (less efficient information processing). No significant differences between the two groups were observed in the magnitude or direction of correlations between task-performance or DDM measures and inattention. Across the sample, the best predictor of
parent-rated inattention was drift rate, indicating that the DDM estimate of processing inefficiency best characterised the features of CPT task performance that related to inattentive behaviour in our sample. Interestingly, parent-rated inattention was not predicted by boundary separation or non-decision time in either group, in line with converging findings from previous research that emphasises the role of inefficient processing in ADHD (Karalunas et al., 2012; Metin et al., 2013; Weigard & Huang-Pollock, 2014).

In DDM, the extent to which the different parameters relate to standard task performance metrics depends on a combination of task demands and features of samples, so in some tasks, differences in RT between conditions or samples may be explained by differences in boundary separation, while in others, it may result from changes in non-decision processes. In our data, hit rate and drift rate were very highly correlated (see Tables SA2 and SA3 in supplementary material.), which supports previous evidence showing that drift rates are often substantial drivers of accuracy (Ratcliff & McKoon, 2008). In fact, running the same regression analysis without the drift rate parameter resulted in a model where hit rate was the only task performance measure retained (see Table SA4 in supplementary material), and a model that explained a similar amount of variance to Model 2 above (which does include drift rate). The benefit, therefore, of using the DDM parameters is an ability to better understand the cognitive processes behind the task performance, as opposed to greater explanatory power. A logical interpretation of hit rate predicting inattention is that children who have more severe inattentive behaviour are less accurate in the CPT-AX, missing more of the infrequent target stimuli. We do not know what processing deficits lie behind this inaccuracy. It could be due to response preparation being so slow that targets are missed (this would be captured by the parameter of non-decision time), or it could be due to poorly calibrated speed-accuracy trade-off (which would be captured by the parameter of boundary separation). In this instance, the parameter of drift rate emerges as key. Accordingly,
interpretation of the relationship between drift rate and inattention provides us with a clearer narrative. Children with more severe inattention are less efficient at information processing, which is likely one of the factors that contributes to a reduced hit rate.

Another advantage of exploring DDM measures when characterising behavioural deficits is that there is accumulating evidence of neurological areas and processes associated with specific DDM measures, which can help us to understand more about the causal pathway from brain to behaviour. The drift rate parameter has been causally linked to the dorsolateral prefrontal cortex (DLPFC), an area thought to integrate sensory evidence (Philiastides, Auksztulewicz, Heekeren, & Blankenburg, 2011) and implicated previously in ADHD, both in terms of reduced activation and delayed maturation of cortical thickness (Bush, 2010).

Given this link, Karalunas et al. (2012) speculate that low drift rates in ADHD samples may be due to deficits in DLPFC function, resulting in difficulty in deciding between two response options. Such use of modelling techniques thus promises to aid in the identification of risk markers and intervention targets for inattention and other disorders in which inattention is a key component.

These results have implications for theories of ADHD. For some time, the focus has been on executive top-down explanations of the disorder but these findings add to a growing literature suggesting that ADHD may, at least in part, reflect deficits in the processing or accumulation of information which underlie the executive deficits (Rommelse et al., 2007). As acknowledged by Metin et al. (2013), these findings do not exclude the possibility that executive deficits are important, rather they indicate that executive dysfunction cannot be considered the sole cognitive factor in ADHD symptoms. Future research into inattentive behaviour, both in term and preterm populations, should focus on using tasks with greater numbers of trials that would allow the fitting of more sophisticated DDM models with more
parameters, to understand in more depth those cognitive processes underlying inattentive behavior.

The current analyses can be interpreted to indicate overlapping aetiology of inattention in our two groups (though larger sample sizes would be required to provide sufficient power to rule out smaller effect size differences and provide certainty of equivalence\(^1\)) which may have positive implications for the suitability of assessment and treatment options used in the general population for children born VP. Research assessing intervention effectiveness within the VP population would be required to explore this in greater detail, not only in light of the narrow scope of the current analysis, but also in recognition of the possibility that neurocognitive differences unrelated to inattentive behaviour may still affect treatment response.

The analysis did not provide further evidence of differences between the cognitive processes relating to inattention in term and VP children, suggesting that the CPT taps into different processes to those implemented in Retzler et al. (2019) and Mulder et al. (2011). To some extent, these contrasting findings demonstrate the very difficulty that computational analysis of behavioural data aims to resolve. Interpretation of task performance in cognitive neuroscience is limited to differing degrees by the impurity of the measures employed, and is made more difficult still by the non-specificity of terminology adopted. Both Retzler et al. (2019) and Mulder et al. (2011) used very different tasks that were both purported to measure inattention.

\(^1\) To further assess equivalence between groups we conducted some Bayesian analyses in addition to our null-hypothesis significance testing (NHST) inferential statistics. First we performed a Bayesian regression to calculate Bayes factors in favour of the alternative hypothesis for the prediction of inattention in a model with group, age and drift rate as predictors. In line with our NHST analysis, we found strong evidence in favour of accepting the alternative hypothesis (\(BF_{10} = 25.95\)). To examine group-specific effects of drift rate on inattention, we performed a second analyses in which group, age and drift rate were added to the null model (akin to including these variables in first steps of a hierarchical regression analysis), before calculating the Bayes factor for the inclusion of the group*drift rate interaction term. This provided some evidence in support of the null hypothesis (\(BF_{01} = 2.71\)), indicating that it is unlikely that the relationship between drift rate and inattention is group-specific.
some element of processing speed, finding that only VP children showed an association between these measures and inattention. It may, perhaps, seem contradictory for no similar finding to be observed in the current analysis with regard to drift rate, which is often referred to as processing efficiency, particularly given that it involves a sub-sample of those in Retzler et al. (2019). Further research that uses designs, techniques and analytical approaches more sensitive to these underpinning cognitive processes is required to address this complexity, and to understand more fully any processing deficits that are specific to children born VP.

Limitations

This study is limited by the use of the EZ-DDM in preference to more complex DDMs that are able to estimate a wider range of parameters. This decision was taken due to the limited number of ‘go’ trials in the task, which resulted from a combination of the CPT-AX design (10% frequency of ‘go’ trials), and consideration of the total number of trials it would be ethical and pragmatic to include for one task within an extended test battery for a sample with attention difficulties. The EZ-DDM is better suited to small numbers of trials (Wagenmakers et al., 2007). Indeed, previous research has demonstrated good fits with very few trials (Lerche, Voss, & Nagler, 2017; Pirrone et al., 2017) and our simulated data suggested a good fit to our empirical data. However, the EZ-DDM did not allow us to look at some of the other components of the DDM such as starting point of evidence accumulation or cross trial variability of model parameters. While the measures provided by the EZ-DDM are those considered the most psychologically relevant (Wagenmakers et al., 2007), and also include those identified by previous literature to underlie inattention, the inflexibility of EZ-DDM may have limited the accuracy of the estimation of our parameters. Starting point, in particular, may have been biased towards the more frequent ‘no-go’ response in this task, and ideally, future studies should aim to collect data from enough trials to fit a full DDM. Inclusion of the other parameters of the full DDM may not only improve the accuracy of
parameter estimation all-round, but may also avoid misinterpretation of data as demonstrated in Ratcliff, Huang-Pollock and McKoon (2018). Incidentally, the EZ-DDM was created by Wagenmakers et al. (2007) to provide an easily applied model that could be used by those without in-depth knowledge of modelling. The current findings, along with previous research in ASD (Pirrone et al., 2017), Parkinson’s disease (Zhang, 2012) and ADHD (Karalunas et al., 2012; Metin et al., 2013; Weigard & Huang-Pollock, 2014), highlight the worth of such an approach alongside standard analyses.

While the EZ-DDM was the best fit to our data as it can be used even with low trial numbers and error rates, it does still require some errors. Although Wagenmakers et al. (2007) proposed a correction method for cases of 100% accuracy, this has been critiqued by Ratcliff (2008) for unreliable parameter recovery, particularly with small trial numbers. As such, we opted to exclude the 10 children from each group who had achieved 100% hit rates, and had, unsurprisingly, also performed significantly better on other measures of task performance.

Future research may benefit from manipulating task difficulty, for example, by making target and distractor stimuli visually similar in order to increase error rates, so that data for the full sample can be analysed.

In contrast to the full study sample, SWAN scores in inattention differed between term and VP children in this sub-sample (see supplementary material for details), and group was a significant unique predictor of inattention when drift rate was modelled. However, given the dimensional approach used in the study design, matched samples per se were not necessary for achieving the study aims. As intended from the recruitment process, both groups in the sub-sample included children from the full spectrum of SWAN scores, facilitating detection of relationships between cognitive processes and inattentive behaviour. Although there were group differences in SWAN inattention overall, there were no differences in the number of children scoring above clinical cut-offs on the Conners 3-P, suggesting that the number of
children with clinically relevant symptoms was well-matched. This may explain why although drift rate was associated with SWAN inattention, which differed between groups, drift rate itself did not differ between groups.

Finally, in the current study the primary factor underlying inattention was the same for both groups. However, these results only provide a snapshot of the children’s development (between 8 and 11 years old), thus it remains unclear whether the developmental trajectories underlying inattention are the same for those born VP and at term, or whether similarities observed here have been reached via distinct pathways. In order to fully understand the similarities and differences in the causal pathways to inattention and ADHD in preterm and term-born children more comprehensive studies are required. Whilst these results provide an encouraging avenue for future research, it is important to note that the amount of variance in inattention explained by our model remained modest at 22.9%, suggesting that these differences in cognition were not the only factors involved in the aetiology of inattention in this sample.

Conclusions

In summary, the cognitive mechanisms underlying inattention in term-born and VP children seem to be at least partly overlapping. High levels of inattention were predicted by lower drift rate, indicating that inattentive behaviour is associated with less efficient processing of information. Use of DDM parameters provided a better characterisation of the individual differences in cognition that related to inattentive behaviour in term and VP children.
References

Jaekel, J., Wolke, D., & Bartmann, P. (2013). Poor attention rather than hyperactivity/impulsivity predicts academic achievement in very preterm and full-

https://doi.org/10.1017/S0033291712001031

https://doi.org/10.1203/PDR.0b013e318212faa0

https://doi.org/10.1037/a0029936

https://doi.org/10.1542/peds.2010-1279

https://doi.org/10.1162/neco.2008.12-06-420

