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Abstract

I present two models of mental rotation created within the
ACT-R theory of cognition, each of which implements one of
the two main strategies identified in the literature. A holistic
strategy rotates mental images as a whole unit whereas piece-
meal strategy decomposes the mental image into pieces and
rotates them individually. Both models provide a close fit to
human response time data from a recent study of mental rota-
tion strategies conducted by Khooshabeh, Hegarty, and Ship-
ley (2013). This work provides an account of human mental
rotation data and in so doing, tests a new proposal for rep-
resenting and processing spatial information to model mental
imagery in ACT-R.
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Models of mental imagery
There have been various attempts to provide formal compu-
tational accounts of mental imagery phenomena (e.g., Glas-
gow & Papadias, 1992; Kunda, McGreggor, & Goel, 2013;
Tabachneck-Schijf, Leonardo, & Simon, 1997; Just & Car-
penter, 1985) and these have often sought to address the issue
of whether imagery requires some form of array based rep-
resentation or can be accomplished by more abstract, amodal
representations and processes.

An early and influential cognitive model that combined
pixel array based representations and more abstract represen-
tations is the CaMeRa model of expert problem solving with
multiple representations (Tabachneck-Schijf et al., 1997). A
more recent example is a model of problem solving on the
Raven’s Progressive Matrices test by Kunda et al. (2013) us-
ing 2D arrays of grayscale pixels and associated transforma-
tion operations.

In recent years there have been a number of attempts to de-
velop computational accounts of mental imagery from within
the assumptions and constraints of cognitive architectures
(e.g., Rosenbloom, 2012; Wintermute, 2012). Cognitive ar-
chitectures are theories of the core memory and control struc-
tures, learning mechanisms, and perception-action processes
required for general intelligence and how they are integrated
into a “system of systems” to enable human cognition and
autonomous, human-level artificial cognitive agents.

The cognitive architecture with one of the most well de-
veloped and comprehensive set of representations for spatial
reasoning and visual imagery is Soar (Laird, 2012) and its
Spatial/Visual System (SVS) (Lathrop, Wintermute, & Laird,
2011; Wintermute, 2012). The SVS system contains two lay-
ers of representation: a visual depictive layer (a bitmap ar-
ray representation of space and the topological structure of
objects), and a quantitative spatial layer (an amodal sym-
bolic/numerical representation of objects and their spatial co-

ordinates, location, rotation and scaling)1. SVS also con-
tains operations to transform the continuous information in
the quantitative spatial layer into symbolic information that
can be used by Soar for reasoning. These processes allow
Soar agents to perform mental imagery operations that can
manipulate the representations and then extract spatial rela-
tionships from the modified states.

Several proposals have been put forward to endow the
ACT-R cognitive architecture (Anderson, 2007) with spatial
abilities. For example Gunzelmann and Lyon (2007) outlined
an extensive proposal for modelling a range of spatial be-
haviour (including imagery) by augmenting the architecture
with a spatial module and several additional buffers and pro-
cesses for transforming spatial information. These proposals
have, as yet, not been implemented however and so it remains
to be seen whether the suggested changes would be able to
account for human spatial competence.

An alternative approach to providing ACT-R with spatial
capacities is the ACT-R/E project to embody ACT-R in robots
(Trafton et al., 2013). ACT-R/E incorporates the Special-
ized Egocentrically Coordinated Spaces (SECS) framework
(Trafton & Harrison, 2011; Harrison & Schunn, 2002) which
adds modules for three aspects of spatial processing: 2D-
retinotopic space, configural space for navigation and local-
isation, and manipulative space for the region that can be
grasped by the robot.

Both of these approaches are broad in the sense that they
propose extensive changes to the architecture (i.e., new mod-
ules and buffers) and seek to endow ACT-R with a wide range
of spatial capabilities related to different spaces (Montello,
1993). Neither approach has modelled spatial imagery how-
ever. The aim of the study reported here is to fill this gap
by developing ACT-R models of human spatial imagery be-
haviour. The approach adopted here is more limited and fo-
cussed than those discussed above in that it does not pro-
pose new modules or buffers but seeks to determine whether
the phenomena can be accounted for with only minor adjust-
ments to the existing structures and assumptions of ACT-R.

In the following sections I describe the relevant structures
and assumptions of ACT-R and the adaptations required to
allow the architecture to model spatial imagery. I then test
the approach by using it to develop models of two proposed
strategies for mental rotation. Finally I discuss the implica-
tions, strengths and weakness of the approach and consider
further applications.

1In the current (9.6.0) version of Soar, the visual depictive level
has been omitted from SVS.
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Figure 1: Components of ACT-R’s mental imagery mechanism: (a) explicit representation of object vertex coordinate locations,
(b) encoding of the vertex locations in the visual buffer, (c) manipulation of the coordinates via matrix transformations.

An ACT-R approach to mental imagery
The two components of ACT-R most relevant to this work are
the vision module which allows ACT-R to perceive objects in
external task environments and the imaginal module which
functions as ACT-R’s limited capacity working memory store
in which information is represented and manipulated during
problem solving.

ACT-R’s perceptual and motor systems were designed to
support interaction with computer-based psychology exper-
iments and therefore typically works within a screen-based
2D coordinate space. ACT-R’s visual module doesn’t interact
with the computer interface directly but via a visual icon, an
intermediate symbolic representation of the objects in the vi-
sual environment. When ACT-R’s visual attention is directed
towards an object in the visual icon, information about the
object enters two buffers: a visual buffer containing informa-
tion about the object’s features (type, shape, colour etc.), and
a visual-location buffer representing the object’s coordinate
location.

Once information has entered the buffers, it is available for
further processing, for example as a cue to retrieve further in-
formation from declarative memory or to create a new prob-
lem state representation in the imaginal module. Compared
to other modules, the imaginal module has a greater degree of
flexibility in that, in addition having standard buffer for cre-
ating and holding information, it also has an imaginal-action
buffer to allow the module to be extended with novel capa-
bilities by enabling arbitrary actions to be performed on in-
formation in the imaginal buffer. This feature is crucial for
modelling mental imagery.

Modifications required to model imagery
Many spatial imagery phenomena involve mental represen-
tations of the shape, location, orientation and spatial extent
of the imagined objects and a set of processes that are able
to transform and compare objects according to these charac-
teristics. While the representational and processing assump-
tions of ACT-R outlined above impose strict but valuable con-
straints on methods for modelling mental imagery, in this re-
gard, the discrete symbolic representations of ACT-R’s visual
module (e.g., shape = ‘square’) with only one x-y coordinate

location for each object are currently inadequate.
In light of this, the approach adopted here augments ACT-

R with the addition of a new feature slot in the visual object
chunk to represent information regarding the outline shape
of environmental objects. This requires objects in the task
environment to be defined so that the coordinate locations of
their vertices are represented explicitly (see Figure 1a). When
ACT-R’s visual module attends to an object, the vertex coor-
dinates are encoded (Figure 1b) and then transferred to the
imaginal buffer.

The second extension to ACT-R adds the ability to perform
various imagery operations (e.g., translation, scanning, scal-
ing, zooming, reflection, rotation and composition functions
such as intersection, union and subtraction) using a set of
linear and affine matrix transformation functions which act
upon the vertex coordinates in the imaginal module via the
imaginal-action buffer. For example, to rotate each coordi-
nate counter-clockwise by a particular angle θ, it is multiplied
by the transformation matrix shown in Figure 1c.

Mental imagery and mental rotation
Mental imagery plays a crucial role in many aspects of cog-
nition, from problem solving, creativity and scientific discov-
ery to psychological disorders such as post-traumatic stress
disorder, social phobia and depression (Kosslyn, Thompson,
& Ganis, 2006; Pearson, Deeprose, Wallace-Hadrill, Burnett
Heyes, & Holmes, 2013). Mental imagery has also been the
subject of one of the longest running and fiercest debates in
cognitive science (Kosslyn & Pomerantz, 1977; Pylyshyn,
1973; Anderson, 1978; Tye, 2000) and the nature of the men-
tal representations and processes underlying mental imagery
is still a subject of contention.

The study of mental rotation has been a cornerstone of re-
search into mental imagery since the original experiments of
Shepard and Metzler (1971). In the typical form of the mental
rotation task, participants are presented with pairs of similar
images, one of which has been rotated around its centre, and
then required to decide whether the images are identical or
not (Figure 2 shows a widely used stimulus from (Shepard &
Metzler, 1971)). The key finding of mental rotation tasks is
that RT typically increases monotonically with the degree of



angular rotation between the images.
Mental rotation has been studied extensively over the last

half century in a wide variety of forms and a range of strate-
gies and underlying processes have been proposed. For ex-
ample, some have suggested that mental rotation is carried out
using a holistic strategy in which the rotated figure is mentally
manipulated as a single, whole unit (e.g., Shepard & Metzler,
1971; Cooper, 1975). Others have argued that rotated figures
are subdivided and the component pieces mentally manipu-
lated separately in a piecemeal fashion.

The latter strategy was advanced by Just and Carpenter
(1976, 1985) who used eye tracking data to support the iden-
tification of three distinct stages in the mental rotation task.
In the first search stage, people look for correspondences be-
tween regions of the target and rotated figures in order to se-
lect candidate pieces for transformation. In the second trans-
form and compare stage, the piece from the rotated image
is mentally re-rotated towards its corresponding piece in the
target image. Crucially, this process is not a single ballistic
rotation but consists of a series of discrete steps in which the
mental image is repeatedly manipulated and then compared
to the target image to determine whether they are sufficiently
congruent to stop.

Figure 2: Stimuli used by Shepard and Metzler (1971).

If the second stage is successful and the two pieces are
found to be congruent, a third confirmation stage is conducted
to determine whether the same degree of rotation will also
bring other corresponding pieces of the two figures into con-
gruence. This involves a repeat of the three stages until it is
judged that the two figures are in fact the same.

In contrast, a holistic strategy involves different stages of
processing. The first consists of a process by which represen-
tations of—and correspondences between—the two images
are constructed. The second consists of a whole-figure rota-
tion process which continues until the two figures are aligned.

In addition to eye movements, response time data are also
used to infer the nature of the processes and strategies being
employed in mental rotation. A common assumption is that
the linear difference in RT between degrees of angular dispar-
ity is a function of the rotation processes and that additional
time is taken by processes as stimulus encoding, response de-
cision and motor processing (Cooper, 1975; Khooshabeh et
al., 2013).

Modelling mental rotation strategies

Human performance In a recent study, Khooshabeh et al.
(2013) investigated the behavioural effects of the two rotation
strategies by forcing people to use one strategy or the other.
They did this by creating fragmented versions of the stimuli
shown in Figure 2 (i.e., objects in which some of the blocks
had been removed), on the assumption that fragmented stim-
uli would be harder to rotate holistically.

To analyse their data Khooshabeh et al. (2013) classified
participants (thirty-eight undergraduate students) as good or
poor imagers according to their degree of accuracy in the task
(the categories being defined as approximately the top and
bottom thirds of the distribution respectively) and analysing
the two groups separately.

This classification is based on previous studies which have
led to the claim that piecemeal strategies are favoured by in-
dividuals with lower spatial ability whereas those with high
spatial ability, because of their greater capacity to build and
maintain complete images in working memory, are more
likely to use a holistic strategy (e.g., Bethell-Fox & Shepard,
1988; Mumaw, Pellegrino, Kail, & Carter, 1984).

Khooshabeh et al. (2013) predicted therefore that in their
experiment, lower spatial ability participants would not dif-
fer in their performance for complete and fragmented stim-
uli (because they use piecemeal strategies for both) whereas
those with higher spatial ability would be faster and more
accurate with complete figures than for fragmented figures,
reflecting the switch from a holistic to a piecemeal strategy.
This would be indicated by the slopes of the respective RT
functions, with the piecemeal producing a steeper slope than
the holistic strategy (Cooper, 1975).

The form of the task was typical, with target and rotated
figures being presented simultaneously side by side on a com-
puter screen. Participants were instructed to judge whether
the shapes were the same or different and that their judgement
should be based on the overall shape of the two figures, ignor-
ing the missing cubes. Participants were also explicitly told
not to respond that the figures were different just because one
had missing cubes. After eight practice trials with feedback,
participants were given 200 experimental trials (100 control
trials in which both figures were complete and 100 trials with
one complete figure and one fragmented figure) and RT was
recorded from the onset of the stimulus until the participant’s
key press response. Ten degrees of rotation were used, from
0 to 180 degrees in increments of 20.

Figure 3a presents the RTs for good imagers as a func-
tion of angle of rotation and figure type (complete, frag-
mented) for same trials (the typical analysis in mental rota-
tion studies). As predicted, the good imagers were signif-
icantly slower in rotating fragmented figures (M = 4601.04
ms, SD = 1944.14) than complete figures (M = 3260.75ms,
SD = 1516.09, F(1,25) = 25.89, p < .001, ηp

2 = .51) and
also had steeper slopes on fragmented (M = 28.29 ms/degree,
SD = 17.03) than complete figures (M = 20.43ms/degree,
SD = 5.99, F(1,25) = 6.65, p = .02, ηp

2 = .21).
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Figure 3: Left: Mean RTs for fragmented and complete stimuli for each angle of rotation, Experiment 1, good spatial imagers,
Khooshabeh et al. (2013). Right: Mean RTs for piecemeal and holistic strategies for each angle of rotation, ACT-R model.

Model performance Two ACT-R models of the experiment
conducted by Khooshabeh et al. (2013) were created, each
implementing one of the two strategies. The holistic and
piecemeal strategies implemented by the models are repre-
sented as flow charts in Figures 4a and 4b respectively2.

Both models perform the rotation task according to the in-
cremental move and test process described by Just and Car-
penter (1976, 1985). The coordinate points representing the
rotated image are incrementally rotated counter-clockwise to-
wards the target image by a constant amount (subject to a de-
gree of perceptual error, represented by a random value sam-
pled from a logistic distribution with mean 0 and variance k).

After each rotation step, the angular disparity between cur-
rent and target coordinate points is reviewed to determine
whether they are sufficiently close for the process to stop.
This test is a measure of image similarity in that if the points
do not coincide then the rotation process will not stop.

The model assumes that RT is determined by the size of
the rotation increment, m, taken at each step and the prox-
imity threshold, p regulating the stop decision. The ACT-R
imaginal delay time parameter, t, which determines the how
long a modification request to the imaginal buffer takes to
complete was adjusted from its default of .2s. to .1s.

According to the holistic strategy model (implemented by
eight production rules), the first stage of the mental rotation
task involves a search for correspondences between regions

2Both ACT-R models are available to download from GitHub:
https://github.com/djpeebles/act-r-mental-rotation-models.

of the target and rotated figures in order to build up a com-
plete, integrated image. When enough pieces of the images
have been matched (two in this model), the rotation stage is
engaged until the figures are sufficiently aligned, at which
point a response is initiated.

In the piecemeal strategy model (implemented by seven
production rules), the first stage of the task involves a search
for correspondences between only two regions of the target
and rotated figures. Once a piece of the rotated image has
been matched to the target image, the rotation stage is en-
gaged until the figures are sufficiently aligned.

When an alignment has occurred, instead of initiating a
response, the model repeats the process from the start until
enough pieces have been matched. When sufficient pieces
have been matched for there to be confidence that the two im-
ages are the same (two in this model), a response is initiated.

The piecemeal strategy model has one additional parameter
than the holistic model, a separate rotation increment, n for
figure pieces subsequent to the first one. This represents the
assumption that the rotation of pieces being used to confirm
the distance will be faster (i.e., be implemented using bigger
step sizes) because the distance is already known.

To test the two models, they were both run 40 times (to sim-
ulate 40 participants) for all of the 10 degrees of rotation and
the mean RT for each distance computed. Figure 3b shows
that both models (with parameters k = 2, m = 8, n = 18,
p = 12 and t = 0.1) provided a close fit to the human data
(holistic: R2 = .951, RMSD = 0.476; piecemeal: R2 = .928,
RMSD = 0.608).

https://github.com/djpeebles/act-r-mental-rotation-models
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Figure 4: Control structure of the ACT-R model for a trial of the experiment using (a) the holistic strategy and (b) the piecemeal
strategy. Each rectangle corresponds to one production rule in the model.

Discussion
The work described above demonstrates that with only rel-
atively minor modifications and a small number of reason-
able assumptions, ACT-R can be applied to develop models
of mental imagery phenomena that provide a close match hu-
man RT data. Crucially, the modifications are restricted to
enabling the representation and transformation of shape in-
formation but the new representation and processes integrate
with the existing control structures of ACT-R so that the be-
haviour of the model is primarily a result of the strategy en-
coded in the production rules (which is essentially the same
for both tasks) and the information processing assumptions
built into the ACT-R’s imaginal module.

The representation of object spatial extent is not at the level
of pixel arrays nor at the level of discrete symbols, but at
an intermediate numerical level that abstracts from the pixel
level. Similarly, the transformation processes incorporated
into the architecture are quantitative in nature and are as-
sumed to belong to the wider set of subsymbolic functions
that act upon quantitative information in ACT-R at a level
closer to the visual system than the qualitative reasoning pro-
cesses over symbolic representations.

In this regard, the current work represents a modest step
towards answering the question concerning the nature of the
representations required to support mental imagery discussed
in the introduction. The human data modelled here are a use-
ful test of the representations and processes used to adapt the
architecture. The models provide an account of the two strate-
gies in terms of where in the task people construct the coher-
ent representations of the figures. In the holistic strategy this
is done at the start (which arguably requires greater effort to
maintain during rotation) whereas in the piecemeal strategy
this is done at the end (which imposes less of a demand on
working memory).

Compared to other mental imagery tasks, mental rotation
is relatively simple in nature. A more stringent test of the
assumptions is necessary therefore and this will come from
modelling more challenging tasks, for example the Raven’s
Progressive Matrices (c.f. Kunda et al., 2013), the pedestal
blocks world or the nonholonomic car motion planning task
(Wintermute, 2012) as these will provide richer behavioural
data and will require more complex strategies involving a
wider range of spatial transformations. This is the plan for
the next stage of this project.
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