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Abstract 

Accurate forecasts of home sales can provide valuable information for not only policymakers, 

but also financial institutions and real estate professionals. Against this backdrop, the objective 

of our paper is to analyze the role of consumers’ home buying attitudes in forecasting quarterly 

US home sales growth. Our results show that the home sentiment index in standard classical 

and Minnesota prior-based Bayesian VARs fail to add to the forecasting accuracy of the growth 

of home sales derived from standard economic variables already included in the models. 

However, when shrinkage is achieved by compressing the data using a Bayesian compressed 

VAR (instead of the parameters as in the BVAR), growth of US home sales can be forecasted 

more accurately, with the housing market sentiment improving the accuracy of the forecasts 

relative to the information contained in economic variables only.    
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1. Introduction 

Academics suggest that housing market leads  business cycles, and housing market activity 

affects the economy at both macroeconomic and microeconomic levels (Leamer 2007, 2015).1 

Since housing represents a large share of the total economy, from a macroeconomic perspective, 

movements in the housing sector spillsover to the entire economy through new constructions, 

renovations of existing property, and the volume of home sales. At the same time, at the 

microeconomic level, performances of financial institutions and real estate firms depend 

crucially on housing market activity, as suggested by the recent financial crisis. Hence, timely 

and accurate forecasts of home sales can provide valuable information to not only policymakers, 

but also to financial institutions and real estate professionals as well as housing market 

participants. 
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In spite of the importance of home sales, the literature (which we discuss below in detail) on 

forecasting home sales instead of house prices in the U.S. at the aggregate- and at regional 

levels is, however, as far as we know, limited to five studies (Dua and Smyth, 1995; Dua and 

Miller, 1996; Dua et al., 1999; Gupta et al., 2010; Hassani et al., 2017). These studies primarily 

rely on price of homes, mortgage rate, real personal disposable income, unemployment rate, 

building permits authorized, and housing starts as possible predictors that tend to affect home 

sales. This is understandable, since the first four factors capture the demand for housing, while 

the latter two affects the supply in the housing market. In this regard, it is important to point 

out that Dua and Smyth (1995) also studied the role of survey data on households' buying 

attitudes for homes, but could not find an important role of this variable in forecasting home 

sales of the U.S. economy. 

 

More recently however, i.e., in the wake of the “Great Recession” which is now very well knwn 

to have been caused by the collapse of the housing market (Gupta et al., 2019), Case et al. 

(2012, 2014) have argued that it is important to consider people’s opinions about buying 

conditions, also referred to as housing sentiment, in analysing housing market decisions. The 

intuition is that housing sentiment captures the expectation of economic agents regarding how 

the housing market is going to behave in the future, and hence, from a behavioural perspective, 

act as a determinant of home purchase decisions, either for consumption or investment via 

renting it out. Against this backdrop, the objective of our paper is to revisit the role of including 

consumers’ home buying attitudes (besides the above-mentioned demand-supply predictors) in 

forecasting home sales growth of the U.S., which has been earlier suggested to be of no 

importance by Dua and Smyth (1995). In general, the main obstacle in analysing the impact of 

people’s opinions about buying conditions on housing market movements and comparing this 

to other competing predictors is usually the lack of a quantifiable metric of housing sentiment 

measured consistently over a sufficiently long period to implement a proper forecasting 

exercise. In this context, the above problem has been solved recently by Bork et al. 

(forthcoming), who has constructed a news housing market sentiment index based on 

household responses to questions regarding house buying conditions from the consumer survey 

of the University of Michigan. Bork et al. (forthcoming ) showed that the housing sentiment 

explains a large share of the time-variation in house prices during both boom and bust cycles 

and it strongly outperforms several macroeconomic variables typically used to forecast house 

prices.2 Given this, we forecast quarterly U.S. home sales, over an out-of-sample period of 

1995:1 to 2014:3, by using an in-sample training period of 1975:3 to 1994:4, by using this 

broad housing sentiment index, over and above the standard predictors used in the literature. 

By comparing our econometric models with and without the housing market sentiment variable, 

we are able to evaluate the role played by home buying attitudes of consumers in forecasting 

home sales growth of the U.S.  

 

Regarding our econometric framework, just like the existing studies (which we discuss in detail 

in Section 2), we rely on both classical and Bayesian VAR models for analysing the ability of 

housing sentiment in forecasting home sales of the U.S. economy. However, unlike the 

literature on home sales forecasting using BVARs, which imposes the popular Minnesota prior 

shrinkage on the parameters to overcome issues of over-parameterization in classical VARs 

(resulting in the favourable performance of the former), we use a Bayesian Compressed VAR 

(BCVAR) framework. In the BCVAR model, shrinkage is achieved by compressing the data 

instead of the parameters. A crucial aspect of this method is that the projections used to 

compress the data are drawn randomly in a data oblivious manner. Then, through Bayesian 

                                                           
2 In-sample evidence, in this regard, can also be found in Dua (2008). 
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model averaging (BMA), different weights are assigned to the projections where the weights 

are determined according to the explanatory power of the compressed variables on the 

dependent variable. In other words, the projections do not involve the data, and thus, compute 

trivially, which is not often the case with BVAR models based on priors other than the 

Minnesota prior. To the best of our knowledge, this is the first paper to forecast U.S. home 

sales by using a BCVAR model, based on a housing sentiment index, which summarizes a 

broader set of information on consumers’ home buying attitudes. In the process, our paper aims 

to analyze the role of both a new measure of housing sentiment and a new econometric 

framework in forecasting home sales, and hence add to the literature in two dimensions, i.e., 

methodology and the predictor-set.  

 

The remainder of the paper is organized as follows: Section 2 presents the literature review, 

while Section 3 lays out the basics of the econometric models used, and Section 4 discusses 

the data and results, with Section 5 concluding the paper. 

 

2. Literature Review       

     

As indicated above, the literature on forecasting home sales in the U.S. at the aggregate- and 

at regional levels is limited to five studies, namely, Dua and Smyth, (1995), Dua and Miller 

(1996), Dua et al., (1999), Gupta et al., (2010), and Hassani et al., (2017). While Dua and 

Smyth (1995) used Bayesian VAR (BVAR) models to forecast home sales for the aggregate 

U.S. economy, Dua and Miller (1996) extended the models from Dua and Smyth (1995) to 

forecast home sales for the state of Connecticut. In their original model, Dua and Smyth (1995) 

considered home sales, price of homes, mortgage interest rate, real disposable income, 

unemployment rate, as well as, survey data on households' buying attitudes for homes. 

However, the authors showed that, the gain from including the survey data in the model is small 

because the efforts have been included in other economic variables.3 Dua and Miller (1996) 

extended the benchmark model (containing home sales, price of homes, mortgage interest rate, 

real disposable income, and unemployment rate) of Dua and Smyth (1995), by including a 

leading index for the Connecticut economy. They showed that, by doing so, one can improve 

the forecast performance of the benchmark model substantially. Given this result, Dua et al., 

(1999) extended the model described in Dua and Smyth (1995) by adding six different leading 

indicators, namely housing permits authorized, housing starts, the US Department of 

Commerce’s composite index of eleven leading indicators, the short- and long-leading indices 

developed by the Center for International Business Cycle Research (CIBCR) at Columbia 

University, and the leading index constructed by CIBCR that focussed solely on employment 

related variables. They found that the benchmark BVAR model (which included, as before, 

home sales, price of homes, mortgage rate, real personal disposable income, and 

unemployment rate) supplemented by the building permits authorized as the leading indicator 

consistently produced the most accurate forecasts. In addition, Dua et al. (1999) noted that 

replacing building permits with housing starts generated equally accurate forecasts of home 

sales. Gupta et al. (2010) analyzed the ability of a wide array of forecasting models, which 

                                                           
3 Interestingly, recent papers by Baghestani et al. (2013) and Baghestani (2017) have highlighted the role of 

consumers' home buying attitudes in predicting in-sample movements of US home sales, while, the importance 

of financial variables (Federal funds rate, mortgage rate, and term-spread) in doing the same has been stressed by 

Baghestani and Kaya (2016). But, it is well-known that in-sample predictability does not necessarily translate into 

out-of-sample forecasting gains, with Campbell (2008) pointing out that, the ultimate test of any predictive model 

is its out-of-sample performance. However, this positive result in favour of consumers' home buying attitudes (as 

well as financial variables) in predicting home sales could be a result of the fact that the models used in these 

studies are only bivariate in nature, consisting of home sales and consumers' home buying attitudes or financial 

variables. 
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included classical and Bayesian vector-error correction (VEC) models, besides the random 

walk (RW), the autoregressive (AR), and BVAR models, in forecasting home sales for the four 

US census regions (Northeast, Midwest, South, West). In their analysis, Gupta et al. (2010) 

used home sales, price of homes, mortgage rate, real personal disposable income, 

unemployment rate, and building permits authorized, i.e., the model prescribed by Dua et al. 

(1999). This study found that except for the South-region, the Bayesian type models 

outperformed all the other models in forecasting home sales at all forecasting horizons, and 

were also capable of predicting the peaks and declines in home sales with tremendous accuracy. 

In sum, the general consensus is that the Bayesian type models are better equipped in 

forecasting home sales than their classical counterparts.  

 

More recently, Hassani et al. (2017) build on this line of literature, by comparing the ability of 

two different versions of Singular Spectrum Analysis (SSA) methods, namely, Recurrent SSA 

(RSSA) and Vector SSA (VSSA), in univariate and multivariate frameworks, in forecasting 

seasonally unadjusted home sales for the aggregate U.S. economy and its four census regions. 

Given the dominance of VAR models in the home sales forecasting literature, Hassani et al. 

(2017) compared the performance of the SSA-based models with classical and Bayesian 

variants of the autoregressive and vector autoregressive models. The authors found that the 

univariate VSSA was the best performing model for the aggregate US home sales, while the 

multivariate versions of the RSSA was the outright winner in forecasting home sales for all the 

four census regions. In the process, their results highlighted the superiority of the 

nonparametric SSA approach. 

 

In sum, the literature has relied on traditional demand and supply factors in forecasting 

aggregate and regional home sales of the U.S. economy, primarily based on VAR type models. 

Dua and Smyth (1995) is the only study to have considered housing sentiment, while Hassani 

et al. (2017) also investigated an alternative econometric framework based on SSA. While Dua 

and Smyth (1995) suggested a weak role for housing sentiment nearly two and half-decades 

back, the recent emphasis of sentiments-related variable in the wake of the global financial 

crisis by Case et al. (2012, 2014) in affecting housing market decisions, provide us with the 

motivation to revisit the role of consumer’s home buying attitudes in forecasting home sales 

growth, based on an improved measure of housing sentiment as developed by Bork et al. 

(forthcoming). Understandably, the decision to do so is due to the fact that the U.S. economy, 

and the housing sector in general have undergone tremendous evolution post-2007, i.e., the 

recent crisis. In addition, we are also able to investigate our question, based on recent 

developments of econometric methodologies in the context of BVARs, than those used in the 

existing literature. In essence, our analysis is an application of recent econometric methodology 

associated with BVARs in analysing the predictive content of a broad measure of housing 

market sentiment in forecasting home sales growth of the U.S. economy based on updated 

information derived from recent data that covers the global financial crisis.  

 

 

3.  Methodology 

Following Koop et al. (2019), we use the following framework based on Bayesian compressed 

VAR (BCVAR) model, as our main focus, by starting off from the basic formulation of a VAR 

model: 

 

𝑌𝑡 = 𝛽𝑌𝑡−1 + 𝜀𝑡                                 (1) 
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where 𝑌𝑡  (t=1,…,T) represents an  n1 vector containing observations on n time 1 series of 

variables, 𝜖𝑡 is i.i.d. 𝑁(0, Ω) and 𝛽 is an nn matrix of coefficients. Under the classical VAR 

model, no restrictions are imposed on the -matrix of the coefficients, i.e., they are left 

unrestricted. Due to issues of overparameterization in VAR models resulting in 

multicollinearity and a loss of degrees of freedom leads to inefficient estimates and possibly 

large out-of-sample forecasting errors, we next discuss the compression of the data. In order to 

compress the explanatory variables in the VAR, we can use the projection matrix Φ  as 

described in Koop, et al. (2019), where Φ  is a m  k matrix drawn from the following 

distribution: 

  

Pr (𝜙𝑖𝑗 =
1

√𝜑
) = 𝜑2 

                                                         Pr(𝜙𝑖𝑗 = 0) = 2(1 − 𝜑) 𝜑  ,                        (2) 

                                                         Pr (𝜙𝑖𝑗 =
1

√𝜑
) = (1 − 𝜑)2  

 

where 𝜑  and 𝑚  are unknown parameters. Next, they rely on BMA to average across the 

different random projections. Treating each r (r=1,…., R) as defining a new model, we first 

calculate the marginal likelihood for each model. Thereafter, we average across the various 

models by using weights proportional to the marginal likelihoods. We also note that both m 

and 𝜑 can be estimated as part of the BMA exercise.  With the estimated projection matrix, we 

can compress the explanatory variables in the VAR and define the compressed VAR model as 

follows:  

 

𝑌𝑡 = 𝛽𝑐(Φ𝑌𝑡−1) + 𝜀𝑡 ,                                                                                               (3) 

 

subjected to the normalization  Φ′Φ = Ι. Finally, the full predictive density 𝑝(𝑌𝑡+ℎ|𝑀𝑟𝐷𝑡) (i.e., 

M1,…,MR) is obtained for each compressed VAR model by using the predictive simulation 

method as descripted in  Koop, et al. (2019).  Therefore, the final BMA forecast for each 

forecast at horizon h can be represented as: 

 

p(𝑌𝑡+ℎ|𝐷𝑡) = ∑ 𝜔𝑟
𝑅
𝑟=1 p(𝑌𝑡+ℎ|𝑀𝑟 , 𝐷𝑡) ,                                                                       (4) 

 

where 𝐷𝑡 is the information set available at time t, 𝜔𝑟 = exp(−.5Ψ𝑟) / ∑ exp (−.5Ψ𝑟)𝑅
𝑟=1   is 

the model  𝑀𝑟  weight, and Ψ𝑟 = 𝐵𝐼𝐶𝑟 − 𝐵𝐼𝐶𝑚𝑖𝑛  , with 𝐵𝐼𝐶𝑟  be the value of the Bayesian 

Information Criterion (BIC) of model 𝑀𝑟   and 𝐵𝐼𝐶𝑚𝑖𝑛   be the minimum value of the BIC 

among  all R models.  
 

Besides the BCVAR, we also estimate the standard classical VAR and BVAR models, with the 

latter based on the popular Minnesota-prior shrinkage on the parameters of the model, by 

imposing restrictions on these coefficients based on the assumption that they are more likely 

to be near zero than the coefficients on shorter lags. However, if there are strong effects from 

less important variables, the data can override this assumption. The restrictions are imposed by 

specifying normal prior distributions with zero means and small standard deviations for all 

coefficients with the standard deviation decreasing as the lags increase. The exception to this 

is, however, the coefficient on the first own lag of a variable, which has a mean of unity, but is 
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also set to zero if the variables in the BVAR are mean-reverting (as in our case). 4  Our 

implementation of the BVAR, which involves a single prior shrinkage parameter (), follows 

closely the approach used by Banbura et al. (2015). However, different from Banbura et al. 

(2015), we modify the approach by following Giannone, et al. (2015) to estimate  in a data-

based fashion. As in Koop et al. (2019), we choose a grid of values for the inverse of the 

shrinkage factor -1 ranging from 0.5 np  to 10 np , in increments of 0.1 np . At each 

point in time, the BIC is used to choose the optimal degree of shrinkage. All remaining 

specification and forecasting choices are exactly the same as in Banbura et al. (2010), and 

hence, we skip reporting the procedure.   

 

Note that, our paper aims to apply the BCVAR approach to forecasting home sales growth 

based on information of housing market sentiment (after controlling for price of homes, 

mortgage rate, real personal disposable income, unemployment rate, building permits 

authorized, and housing starts), while Koop et al., (2019) used the framework to forecast 7 

major macroeconomic variables of the U.S. economy (namely, industrial production growth, 

the unemployment rate, total nonfarm employment, the change in the Fed funds rate, the change 

in the 10 year T-bill rate, the finished good producer price inflationand consumer price 

inflation), based on a small-, medium- and large-scales BCVARs comprising of 7, 19 and 129 

macroeconomic variables respectively, that is available from the FRED-MD database 

(McCracken and Ng, 2016).  
 

4. Data and Results 

As discussed in the introduction, our data set covers the quarterly period of 1975:3 to 2014:3, 

with the start and end date being purely driven by the availability of the housing sentiment 

index developed by Bork et al. (forthcoming ). The authors use time series data from the 

consumer surveys of the University of Michigan to generate the housing sentiment index, with 

housing sentiment defined based on the general attitude of households about house buying 

conditions. In particular, Bork et al. (forthcoming ) consider the underlying reasons households 

to provide their views about all the house buying conditions. The part of University of 

Michigan’s consumer survey related to house buying conditions starts with the question: 

"Generally speaking, do you think now is a good time or a bad time to buy a house?", with the 

follow-up question: "Why do you say so?". In constructing the index, Bork et al. (forthcoming ) 

focussed on the responses to the follow-up question as the idea is to draw on the information 

in the underlying reasons why households believe that it is a bad or good time to buy a house. 

Specifically, the housing sentiment index is based on the following ten time series: good time 

to buy ; prices are low, good time to buy ; prices are going higher, good time to buy; interest 

rates are low, good time to buy; borrow-in-advance of rising interest rates, good time to buy; 

good investment, good time to buy; times are good, bad time to buy; prices are high, bad time 

to buy; interest rates are high, bad time to buy; cannot afford, and bad time to buy; uncertain 

future. Then Bork et al. (forthcoming) used partial least squares (PLS) to aggregate the 

information contained in each of the ten time series into an easy-to-interpret index of housing 

sentiment, with PLS filtering out idiosyncratic noise from the individual time series and 

summarizing the most important information in a single index.5  

                                                           
4 Based on the suggestion of an anonymous referee, we also imposed the sum-of-coefficients and dummy-initial-

observation priors, as in Giannone et al., (2015). However, the performances of these BVAR models, i.e., sum-

of-coefficients and dummy-initial-observation priors, were virtually similar to that of the model with the 

Minnesota prior, with average RMSFE being 1.0005 and 1.0000 respectively. Given this, we have suppressed 

these results to save space, but are available upon request from the authors. 
5  The data is available for download from: 

https://www.dropbox.com/s/al3sddq1026xci2/Online%20data.xlsx?dl=0. 

https://www.dropbox.com/s/al3sddq1026xci2/Online%20data.xlsx?dl=0
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Besides using the index measuring consumers’ home buying attitudes capturing housing 

market sentiment, the other variables used include: sales of new and single-family houses, 

median sale prices of new and single-family houses, 30-year conventional mortgage rate, real 

disposable personal income (in chained 2009 dollars), civilian unemployment rate, new private 

housing units authorized by building permits, and new privately owned housing units started. 

Note that, on one hand, the price of homes, income, interest rate, unemployment rate, would 

all determine the ability of economic agents to buy a property either for consumption or 

investment. In other words, these variables capture the demand for housing. Housing starts and 

permits on the other hand, is a leading indication of the supply of housing in the market. Taken 

together, these six variables, capture demand- and supply-sides of the economy. Data on home 

sales and prices are obtained from the Census Bureau of the US, while the other variables are 

derived from the FRED database of the Federal Reserve Bank of St. Louis. All the variables 

are seasonally adjusted, and are converted into quarterly data based on temporal aggregation 

when it is available at a higher frequency. Following Koop et al. (forthcoming), we ensure that 

all variables are approximately mean-reverting which, in turn, requires us to use growth rates 

of home sales and prices, and that of real disposable personal income. In the Appendix of the 

paper, Figure A1 plots the eight variables of our concern while Table A1 provides the summary 

statistics for the variables.  

 

To avoid forward-looking bias, we follow Bork et al. (forthcoming ) to compute the housing 

sentiment index in a recursive manner over 1995:1-2014:3.  Thereafter, we use the same time-

frame as the out-of-sample period in our forecasting exercise, with our models being estimated 

recursively over this period as well producing one- to twelve-quarters-ahead forecasts. The lag-

length chosen for the VAR models is 1, based on the BIC.  

 

For our forecasting, we estimate two-versions each of the classical VAR model, BVAR model 

and the BCVAR model. In the first case of each of the VAR, BVAR and BCVAR models, we 

include home sales, price of homes, mortgage rate, real personal disposable income, 

unemployment rate, building permits authorized, and housing starts. Building on the results of 

the first model, we incorporate the housing sentiment index in the second version of the VAR, 

BVAR and BCVAR models, along with all the previously-mentioned variables. Hence, we end 

up with six models, three for each case. We then compare the mean squared forecast errors 

(MSFEs) from each of the models, relative to the MSFE of the naïve (no-change) forecasting 

model, which we call the relative MSFE (RMSFE). Understandably, a RMSFE value of less 

(greater) than one, would suggest that the particular model analyzed performs better (worse) 

than the naïve model. The RMSFE for each model is reported in Table 1 for forecasting 

horizons 1 to 12, along with the average values of the same, over all these forecasting horizons 

– a metric that has been used widely in the abovementioned home sales forecasting literature 

to decide on the optimal (best-performing) forecasting model.      

 

We can make the following observations from Table 1: (1) The various VARs considered 

consistently outperform the naïve model for all horizons, with the exception of eight-, and 

twelve-quarters-ahead forecasts. At horizon h=8, the naïve model performs better than all the 

VAR models, while at h=12, the same holds true relative to the VARs and the BVARs, but not 

the BCVARs; (2) On average, adding information of the housing sentiment index does not have 

any value added to forecasting accuracy of home sales growth derived from the VAR and 

BVAR models. This result is consistent with that of Dua and Smyth (1995); (3) Based on the 

average value of the RMSFE, the BVAR models outperform their corresponding classical 

counterparts, but the BCVAR models performs better than both VAR and BVAR models; (4) 
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Within the BCVAR models, the BCVAR2 model outperforms the BCVAR1 model based on 

the average RMSFE, producing a gain of 6.7457 percent,6 and; (5) If we look at the individual 

forecasting horizon, the best performing model at each horizon, based on the lowest MSFE (as 

shown by the bold entries in each row) across each models are as follows: For horizons, 1, 2, 

3, 7, 9, 10 and 11, the BCVAR1 is the outright favourite, while BCVAR2 does the best at 

horizons 4,5 and 12. For the remaining two horizons, BVAR1 wins the race at horizon 6, and 

surprisingly the naïve model at the horizon 8. 

  

In sum, we observe that shrinkage or either parameters (i.e., BVARs) or data (BCVARs) matter 

in terms of outperforming the classical VAR which has no restrictions imposed. Within the 

class of the Bayesian versions of the VAR, when shrinkage is achieved by compressing the 

data (as done in the BCVARs) instead of the parameters (as implemented in the BVARs), 

growth of U.S. home sales can be forecasted relatively more accurately. In other words in the 

BCVARs, when a big dimensional problem is turned into a smaller, more computationally 

tractable one, with Bayesian model averaging done over various compressions by attaching 

greater weight to compressions, we obtain more accurate forecast of home sales growth of the 

aggregate U.S. economy. This result highlights the first contribution of our application in the 

sense that we show that by applying a different type of more recent Bayesian approach based 

on data compression (i.e., the BCVAR), unlike what has been previously done in the literature 

with shrinkage based on parameters (BVAR), we can obtain better results for home sales 

predictability. In addition, in this (BCVAR) framework, the housing market sentiment tends to 

improve the accuracy of the forecasts for home sales growth, when compared to the information 

contained in economic variables only aiming to capture demand-supply conditions of the 

housing market. This result in turn, is the second contribution of our paper, as it shows that 

housing market sentiment brings in additional behavioural information beyond the information 

contained in standard variables that have been used in the literature of home sale forecasting 

of the U.S. economy thus far. This result confirms the suggestions of Case et al. (2012, 2014), 

who emphasize the need to incorporate housing market sentiment in the wake of the recent 

financial crisis, which originated from the housing market, to capture the expectations of agents 

about how the housing market is going to behave in the future. Housing sentiment affects the 

consumption and investment decisions of housing market participants and hence, shapes the 

future path of home sales.7   

 

[INSERT TABLE 1] 

 

In Figure 1, we plot the forecasts at various horizons generated from the BCAVR2 model, i.e., 

the Bayesian Compressed VAR with the sentiment included, as it is the “optimal” model, on 

average over the 12-quarters considered, along with the actual values of the home sales 

growth.8 As can be seen from the Figure, the BCVAR2 model does quite well in predicting the 

turning points in the data by moving in the same direction as the actual values of home sales 

growth, but the forecasts are relatively less volatile than the actual data.  

 

                                                           
6 Based on the suggestion of an anonymous referee, we also estimated an Artificial Neural Network (ANN) model. 

We found that, on average, the ANN model performed way worse, with the RMSFE between the ANN and 

BCVAR2 being 56.20. Given that the literature on home sales forecasting has primarily concentrated on VAR-

type models, these results have been suppressed to save space, but are available upon request from the authors. 
7 However, it is also important to qualify this statement a bit. If we compare the forecasting performance of the 

BCVAR1 with that of the BCVAR2 model by leaving out h=8, where both these models perform poorly relative 

to the naïve model (with BCVAR1 performing worst amongst all the models), then the former ends up being the 

preferred model, with an average RMSFE of 0.1829 compared to 0.2132. 
8 All forecast plots start from the common period of 1998:Q1 to correspond with the 12-steps-ahead forecasts. 
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5. Conclusion 

The housing market activity in the U.S. has been shown to affect the economy at both the 

macroeconomic and the microeconomic level. Hence, timely and accurate forecasts of home 

sales can provide valuable information not only, for policy makers, but also for housing market 

participants (financial institutions and real estate professionals). Given this, we analyze the role 

of including consumers’ home buying attitudes, in a model that contains information on lagged 

economic variables (such as, price of homes, mortgage rate, real personal disposable income, 

unemployment rate, building permits authorized and housing starts, besides home sales itself), 

for forecasting quarterly US home sales, over an out-of-sample period of 1995:1 to 2014:3. In 

doing so, we rely on both classical and Bayesian VAR models for analysing the ability of a 

newly developed broad housing sentiment index in forecasting growth of home sales of the US 

economy. Besides using the popular Minnesota prior shrinkage on the parameters to overcome 

issues of over-parameterization in classical VARs, we also consider a Bayesian Compressed 

VAR (BCVAR) model. In the BCVAR model, shrinkage is achieved by compressing the data 

instead of the parameters. Our results show that, when shrinkage is achieved by compressing 

the data instead of the parameters, the growth rate of U.S. home sales can be forecasted more 

accurately. In addition, the housing market sentiment capturing consumers’ home buying 

attitudes, included in the BCVAR model, tends to improve the accuracy of the forecasts for 

home sales growth, when compared to the information contained in economic variables only. 

This model also tends to predict well the turning points of the home sales growth. Our results 

thus highlight the importance of compressing the data over the parameters in Bayesian models, 

when forecasting home sales based on housing sentiment, over and above standard economic 

variables.  

 

As indicated earlier, movements in the housing sector spillsover to the entire economy through 

new constructions, renovations of existing property, and the volume of home sales. In addition, 

performances of financial institutions and real estate firms depend crucially on housing market 

activity. Hence, timely and accurate forecasts of home sales can provide valuable information 

to not only policymakers, but also to financial institutions and real estate professionals as well 

as housing market participants. Given these issues, our analysis have important implications 

for these economic agents. In particular, our results point out that market participants and 

policymakers can benefit by including housing market sentiment, besides standard demand-

supply predictors, when forecasting home sales. Accurate forecasting of home sales would give 

an indication to policymakers as to whether the economy is heading for an expansion or 

recession, and help in the design of appropriate monetary and fiscal policies to ensure stability 

in the macroeconomy. Recall, policies take time to impact the economy, hence, forecasting the 

future path of the economy based on accurate predictions of home sales is of tremendous 

importance to policy authorities. In addition, financial market participants, can make 

projections about future profitability of their firms based on the prediction of home sales. But 

agents in the economy must realize that they would need to incorporate behavioural 

information to get more accurate forecasts home sales, rather than just relying on standard 

demand-supply factors. Furthermore, these agents must also understand that forecasts from 

standard methods traditionally used can be improved further by using recent advances in 

econometric models, which in turn involves compressing the data, rather than the parameter 

space.   
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Given that Bork et al. (forthcoming ) has shown that the national housing sentiment index can 

also accurately forecast regional housing price growth rates, as part of future research, it would 

be interesting to check, whether the same hold for regional home sales growth rates as well. 
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Table 1. Forecasting Performance of Alternative VAR Models:  

    

 Forecasting Models 

Forecast Horizon 

(h) VAR1 BVAR1 BCVAR1 VAR2 BVAR2 BCVAR2 

1 0.4952 0.4888 0.0267 0.4916 0.4918 0.0288 

2 0.3601 0.3464 0.0973 0.3560 0.3503 0.2108 

3 0.5321 0.5013 0.0492 0.5425 0.5091 0.1198 

4 2.6433 2.4992 0.4672 2.6806 2.5129 0.4641 

5 0.5169 0.4836 0.0084 0.5043 0.4827 0.0034 

6 0.3425 0.3241 0.4360 0.3368 0.3247 0.6161 

7 0.5373 0.5170 0.0648 0.5366 0.5181 0.1503 

8 1.9184 1.8736 5.4171 1.9344 1.8746 4.5827 

9 0.4724 0.4637 0.1558 0.4668 0.4622 0.2324 

10 0.3108 0.3098 0.0000 0.3055 0.3091 0.0097 

11 0.4736 0.4809 0.0202 0.4683 0.4793 0.0628 

12 1.7479 1.7846 0.6859 1.7373 1.7780 0.4464 

Average 0.8625 0.8394 0.6191 0.8634 0.8411 0.5773 
Note: Entries are relative mean square forecast errors of a specific model against the naïve (random walk) model 

(RMSFE); VAR1 (VAR2), BVAR1 (BVAR2), and BCVAR1 (BCVAR2) represent the typical VAR without 

housing sentiment (with housing sentiment included), the Bayesian VAR based on the Minnesota prior without 

housing sentiment (with housing sentiment included), and the Bayesian compressed VAR without housing 

sentiment (with housing sentiment included); Bold entries indicate when the model performs the best in terms of 

the RMSFE; For h=8, the naïve model performs the best. 
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Figure 1. Actual versus Forecasts from BCVAR2 Model: 
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Note: See Notes to Table 1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-40

-20

0

20

40

1
9

9
8

Q
1

1
9

9
9

Q
2

2
0

0
0

Q
3

2
0

0
1

Q
4

2
0

0
3

Q
1

2
0

0
4

Q
2

2
0

0
5

Q
3

2
0

0
6

Q
4

2
0

0
8

Q
1

2
0

0
9

Q
2

2
0

1
0

Q
3

2
0

1
1

Q
4

2
0

1
3

Q
1

2
0

1
4

Q
2

Actual Forecast (h=7)

-40

-20

0

20

40

1
9

9
8

Q
1

1
9

9
9

Q
2

2
0

0
0

Q
3

2
0

0
1

Q
4

2
0

0
3

Q
1

2
0

0
4

Q
2

2
0

0
5

Q
3

2
0

0
6

Q
4

2
0

0
8

Q
1

2
0

0
9

Q
2

2
0

1
0

Q
3

2
0

1
1

Q
4

2
0

1
3

Q
1

2
0

1
4

Q
2

Actual Forecast (h=8)

-40

-20

0

20

40

1
9

9
8

Q
1

1
9

9
9

Q
2

2
0

0
0

Q
3

2
0

0
1

Q
4

2
0

0
3

Q
1

2
0

0
4

Q
2

2
0

0
5

Q
3

2
0

0
6

Q
4

2
0

0
8

Q
1

2
0

0
9

Q
2

2
0

1
0

Q
3

2
0

1
1

Q
4

2
0

1
3

Q
1

2
0

1
4

Q
2

Actual Forecast (h=9)

-40

-20

0

20

40

1
9

9
8

Q
1

1
9

9
9

Q
2

2
0

0
0

Q
3

2
0

0
1

Q
4

2
0

0
3

Q
1

2
0

0
4

Q
2

2
0

0
5

Q
3

2
0

0
6

Q
4

2
0

0
8

Q
1

2
0

0
9

Q
2

2
0

1
0

Q
3

2
0

1
1

Q
4

2
0

1
3

Q
1

2
0

1
4

Q
2

Actual Forecast (h=10)

-40

-20

0

20

40

1
9

9
8

Q
1

1
9

9
9

Q
2

2
0

0
0

Q
3

2
0

0
1

Q
4

2
0

0
3

Q
1

2
0

0
4

Q
2

2
0

0
5

Q
3

2
0

0
6

Q
4

2
0

0
8

Q
1

2
0

0
9

Q
2

2
0

1
0

Q
3

2
0

1
1

Q
4

2
0

1
3

Q
1

2
0

1
4

Q
2

Actual Forecast (h=11)

-40

-20

0

20

40

1
9

9
8

Q
1

1
9

9
9

Q
2

2
0

0
0

Q
3

2
0

0
1

Q
4

2
0

0
3

Q
1

2
0

0
4

Q
2

2
0

0
5

Q
3

2
0

0
6

Q
4

2
0

0
8

Q
1

2
0

0
9

Q
2

2
0

1
0

Q
3

2
0

1
1

Q
4

2
0

1
3

Q
1

2
0

1
4

Q
2

Actual Forecast (h=12)



14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX: 

Figure A1. Data Plot 
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Table A1. Summary Statistics 

 Variable 

Statistic 

HOME 

SALES 

GROWTH 

HOUSING 

RETURNS 

REAL 

DISPOSABLE 

PERSONAL 

INCOME GROWTH 

MORTGAGE 

RATE 

UNEMPLOYMENT 

RATE 

HOUSING 

STARTS 

HOUSING 

PERMITS 

HOUSING 

SENTIMENT 

Mean -0.2583 1.2529 0.6856 8.5151 6.5057 7.2035 7.1766 -0.0231 

Median -0.6557 1.2679 0.7169 8.0100 6.1333 7.2971 7.2572 -0.0263 

Maximum 32.5054 7.7731 2.5925 17.7333 10.6667 7.6593 7.7090 0.1958 

Minimum -38.9961 -8.1952 -4.2652 3.3600 3.9000 6.2647 6.2891 -0.2441 

Std. Dev. 15.8673 2.7665 0.8764 3.2005 1.5766 0.3454 0.3369 0.0910 

Skewness -0.0052 -0.3538 -1.4574 0.7933 0.5420 -1.1086 -0.8899 -0.1816 

Kurtosis 2.1780 3.4672 9.4030 3.2773 2.6277 3.5104 3.1166 3.0846 

Jarque-Bera 4.4211 4.7038 323.7811 16.9697 8.5935 33.8597 20.8111 0.9093 

Probability 0.1096 0.0952 0.0000 0.0002 0.0136 0.0000 0.0000 0.6347 

Observations 157 
Note: Std. Dev. stands for standard deviation, while probability is the p-value for the Jarque-Bera test, with the null hypothesis of normality. 


