
1	Introduction
Engineering	workpieces	are	designed,	manufactured	and	measured	to	meet	tolerance	specifications	of	various	geometrical	characteristics	(e.g.,	surface	texture,	size,	angle,	radius).	After	a	workpiece	has	been	manufactured,	it

is	necessary	to	verify	the	derived	characterization	(tolerance)	parameters	to	ensure	it	performs	its	designed	functions.	Though	the	designed	functions	of	a	workpiece	are	the	comprehensive	effect	of	several	characterization	parameters,

surface	texture	is	often	the	dominant	one.	The	roughness,	waviness	and	form	are	three	main	characteristics	on	functional	surfaces	(e.g.,	roughness	may	affect	the	lifetime,	efficiency	and	fuel	consumption	of	a	part)	[1,2].

Obtaining	roughness,	waviness	and	form	frequency	bands	relevant	 to	a	surface	 is	normally	accomplished	by	using	filtration	techniques	to	extract	a	surface	texture	signal.	 In	principle,	 filtration	must	be	carried	out	before
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Abstract

Nowadays,	 complex	 geometrical	 surface	 texture	measurement	 and	 evaluation	 require	 advanced	 filtration	 techniques.	 Discrete	 wavelet	 transform	 (DWT),	 especially	 the	 second-generation	 wavelet	 (Lifting	Wavelet

Transform	–	LWT),	is	the	most	adopted	one	due	to	its	unified	and	abundant	characteristics	in	measured	data	processing,	geometrical	feature	extraction,	manufacturing	process	planning,	and	production	monitoring.	However,

when	 dealing	with	 varied	 complex	 functional	 surfaces,	 the	 computational	 payload	 for	 performing	DWT	 in	 real-time	 often	 becomes	 a	 core	 bottleneck	 in	 the	 context	 of	massive	measured	 data	 and	 limited	 computational

capacities.	It	is	a	more	prominent	problem	for	the	areal	surface	texture	filtration	by	using	2D	DWT.	To	address	the	issue,	this	paper	presents	a	generic	parallel	computational	framework	for	lifting	wavelet	transform	(GPCF-

LWT)	based	on	Graphics	Process	Unit	(GPU)	clusters	and	the	Compute	Unified	Device	Architecture	(CUDA).	Due	to	its	cost-effective	hardware	design	and	the	powerful	parallel	computing	capacity,	the	proposed	framework

can	support	online	(or	near	real-time)	engineering	surface	filtration	for	micro-	and	nano-scale	surface	metrology	through	exploring	a	novel	parallel	method	named	LBB	model,	the	improved	algorithms	of	lifting	scheme	and

three	 implementation	optimizations	on	 the	heterogeneous	multi-GPU	systems.	The	 innovative	approach	enables	optimizations	on	 individual	GPU	node	 through	an	overarching	 framework	 that	 is	capable	of	data	-oriented

dynamic	 load	 balancing	 (DLB)	 driven	 by	 a	 fuzzy	 neural	 network	 (FNN).	 The	 paper	 concludes	 with	 a	 case	 study	 on	 filtering	 and	 extracting	manufactured	 surface	 topographical	 characteristics	 from	 real	 surfaces.	 The

experimental	results	have	demonstrated	substantial	improvements	on	the	GPCF-LWT	implementation	in	terms	of	computational	efficiency,	operational	robustness,	and	task	generalization.
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suitable	numerical	surface	texture	parameters	can	be	identified.	It	means	that	geometrical	characteristic	information	relating	closely	with	functional	surfaces	can	be	extracted	precisely	from	measured	datasets	by	using	appropriate

filters.	This	ensures	the	potential	of	establishing	functional	correlations	between	tolerance	specification	and	verification	[1–3].

The	 rapid	 progress	 of	 filtration	 techniques	 has	 presented	metrologists	 a	 set	 of	 advanced	 tools,	 e.g.	Gaussian	 filters,	morphological	 filters	 and	wavelet	 filters	 [4–7].	Gaussian	 filtering	 is	 commonly	 used	 in	 surface	 texture

measurements	and	has	been	recommended	by	ISO	16,610	and	ASME	B46	standards	 for	establishing	a	reference	surface	 [8–10].	However,	using	Gaussian	 filter	 to	extract	surface	 topographical	characteristics	must	be	based	on	a

presupposition	that	a	raw	surface	texture	signal	 is	a	combination	of	a	series	of	harmonic	components	[10].	Unfortunately,	areal	engineering	surface	texture	measurement	contains	not	only	regular	signals	but	also	nonperiodic	and

random	signals,	e.g.	deep	valleys,	high	peaks	and	scratches	that	are	generated	during	various	manufacturing	processes,	so	that	extraction,	filtration	and	analysis	of	these	signals	are	indispensable	methods	for	monitoring	how	process

information	(e.g.	surface	texture	parameters)	relate	to	variability	of	the	manufacturing	processes	[2].	Thus,	straight	applications	of	Gaussian	filter	struggle	to	satisfy	the	challenging	requirements	of	surface	texture	measurement	and

analysis.	In	contrast,	the	discrete	wavelet	transform	(DWT)	has	shown	great	potential	in	handling	the	complex	issues	efficiently.	DWT	has	a	great	diversity	of	mother	wavelets	(e.g.	Haar,	Daubechies,	CDF	biorthogonal,	Coiflet)	that	can

be	applied	according	to	different	application	purposes.	Moreover,	DWT	has	advantages	on	multi-resolution	analysis	and	lower	computational	complexity.

Recently,	surface	texture	measurement	has	entered	the	era	of	miniaturization,	e.g.	various	explorations	on	micro-	or	nano-machining	and	micro-electromechanical	systems	(MEMS)	manufacturing	[1].	Hence	the	 increasing

demands	for	efficient	handling	of	big	(measurement)	data,	processing	accuracy,	and	real-time	performance	have	been	treated	as	paramount.	As	the	status	quo,	the	computational	performance	of	DWT	is	a	core	bottleneck	for	handling

high-throughput	in	online	(or	near	real-time)	manner	[11],	especially	for	two-dimensional	DWT	(2D	DWT)	in	areal	surface	texture	measurement	[12].

To	overcome	this	bottleneck,	pure	algorithmic	acceleration	solutions	have	been	hotly	investigated	in	the	last	decade.	Sweldens	proposed	a	new	DWT	model,	it	known	as	lifting	wavelet	transform	(LWT)	or	second-generation

wavelet	 that	 improved	 computational	 performance	 and	 optimized	 the	 memory	 consumption	 compared	 to	 the	 first-generation	 wavelet	 –	 —Mallet	 algorithm	 [13].	 Although	 promising,	 lifting	 scheme	 still	 has	 limited	 satisfaction

performance	 in	 accelerating	 computations	 of	DWT	 for	 online	 applications	when	 facing	 large-scale	data	 size.	Based	on	 that,	 hardware	accelerations	have	become	a	 research	 focus.	Graphics	Processing	Units	 (GPU)	 enables	 those

solutions	and	has	become	the	standard	accessory	for	computation-intensive	applications.	Unfortunately,	current	lifting	scheme	struggles	on	a	single	GPU	for	meeting	the	demands	of	online	process,	especially	when	dealing	with	large-

scale	and	dynamic	datasets	to	define	high	precision	requirements	for	surface	texture	metrology.

To	tackle	the	challenges,	this	paper	presents	a	generic	parallel	computational	framework	for	LWT	(GPCF-LWT)	based	on	the	off-the-shelf	consumer-grade	CUDA	multi-GPU	systems.	The	proposed	GPCF-LWT	can	accelerate

computational-intensive	wavelets,	so	that	it	can	support	online	engineering	surface	filtration	for	high	precision	surface	metrology	through	exploring	an	innovative	computational	model	(named	the	LBB	model)	for	improving	the	usage

of	GPU	shared	memory	and	an	improved	lifting	scheme	for	reducing	the	inherent	synchronizations	in	the	classic	lifting	scheme.	The	GPCF-LWT	also	contains	three	implementation	optimizations	based	on	the	hardware	advancements	of

an	 individual	 GPU	 node	 and	 the	 novel	 dynamic	 load	 balancing	 (DLB)	model	 by	 using	 the	 improved	 fuzzy	 neural	 network	 (FNN)	 for	 heterogeneous	multi-GPUs.	 Therefore,	 it	 supports	 intelligent	 wavelet	 transform	 selections	 in

accordance	with	different	surface	characterization	requirements	and	measurement	conditions.

The	rest	of	this	paper	is	organized	as	follows.	Section	2	gives	a	brief	review	of	the	previous	related	works,	which	leads	to	further	clarify	the	contributions	of	this	research.	An	in-depth	analysis	of	the	feasibility	of	algorithm

improvements	for	adapting	parallel	computation	are	discussed	in	Section	3	following	on	a	brief	introduction	of	the	lifting	scheme	based	second-generation	wavelet	transform.	Section	4	presents	the	GPCF-LWT	framework	and	its	three

key	components.	The	LBB	model	 for	GPCF-LWT	has	been	explored	based	on	a	detailed	evaluation	of	 the	 three	classic	parallel	computation	models	 for	 lifting	scheme	 implementations	 to	solve	 the	problem	of	GPU	shared	memory

shortage	during	LWT	computation.	To	increase	the	parallelizability	of	LWT,	an	improved	lifting	scheme	for	reducing	the	inherent	synchronizations	has	been	defined,	and	to	further	accelerate	the	LWT	computation,	three	complementary

implementation	optimizations	in	accordance	with	the	latest	hardware	advancements	of	GPU	cards	have	been	discussed.	Moreover,	to	maximize	parallelization	of	GPCF-LWT	on	a	heterogeneous	multi-GPU	platform,	Section	5	introduces

a	novel	dynamic	load	balancing	(DLB)	model,	in	which	a	more	effective	FNN	has	been	designed	based	on	the	previous	work	of	authors.	A	case	study	is	demonstrated	and	evaluated	in	Section	6	to	test	and	verify	the	research	ideas.

Finally,	Section	7	concludes	this	paper	and	summarizes	the	future	works.

2	Previous	related	works
Modern	 GPUs	 are	 not	 only	 powerful	 graphics	 engines,	 but	 also	 highly	 parallel	 arithmetic	 and	 programmable	 processors.	 GPU	 is	 a	 SIMD	 (Single	 Instruction	Multiple	 Data)	 parallel	 device	 containing	 several	 streaming

multiprocessors	(SM),	and	each	SM	has	multiple	GPU	cores	(also	named	CUDA	cores),	i.e.,	stream	processors	(SP)	which	are	the	computational	cores	for	processing	multiple	threads	simultaneously	(each	GPU	core	manages	a	thread).

Besides	for	visualization	and	rendering,	other	more	general-purpose	computations	using	GPU	(so	called	GPGPU)	have	also	prosperous	since	2002	when	consumer-grade	graphics	cards	became	truly	‘‘programmable’’,	ranging	from

numeric	computational	operations	[14–16]	to	computer	aided	design,	tolerance	and	measurement	areas.	More	specifically,	GPGPU	has	been	proposed	to	solve	numerous	compute-intensive	problems	which	cannot	be	solved	by	using

CPU	based	serial	processing	mode,	e.g.,	Mccool	 introduced	traditional	GPU	hardware	and	GPU	programming	models	for	signal	processing	and	summarized	some	classic	signal	processing	applications	based	on	GPU	[17].	Su	et	 al.



proposed	 a	 GPGPU	 framework	 to	 accelerate	 2D	Gaussian	 filtering,	 and	 it	 achieved	 about	 4.8	 times	 speedup	without	 reducing	 the	 filtering	 quality	 [18].	 However,	 traditional	 GPGPU	 programming	must	 be	 coded	with	 graphical

programming	interfaces	such	as	OpenGL	and	DirectX,	so	heavy	manual	works	were	involved	in	the	whole	procedure	of	developing	GPGPU	programs,	e.g.,	texture	mappings,	manual	and	static	threading,	memory	management,	and

shading	program	execution.	Thus,	this	obsolete	GPGPU	programming	procedure	is	very	complicated,	and	it	also	limited	the	parallel	computing	ability	of	GPU	cards.

To	alleviate	these	application	difficulties,	 in	2007,	NVIDIA	introduced	CUDA	that	 is	a	programing	framework	for	general-purpose	computation	and	provides	a	scalable	and	integrated	programming	model	for	allocating	and

organizing	processing	threads	and	mapping	them	into	SMs	and	CUDA	cores	with	dynamical	adaption	ability	for	all	mainstream	GPU	architectures	[19].	In	addition,	CUDA	maintains	a	sophisticated	memory	hierarchy	(e.g.	registers,

local	memory,	shared	memory,	global	memory	and	constant	memory)	in	which	different	memories	can	be	applied	according	to	particular	applications	and	optimization	circumstances,	and	CUDA	GPU	cards	had	been	optimized	with

higher	memory	bandwidth	and	fast	on-chip	performance	[19–21].	Better	yet,	it	embedded	a	series	of	APIs	to	program	directly	on	GPU	instead	of	transferring	application	codes	to	various	obscure	graphics	APIs	and	the	shading	language

manually.	In	CUDA	programs,	any	function	running	on	a	GPU	card	is	called	“kernel”,	and	launching	a	kernel	will	generate	multiple	threads	running	on	the	GPU	[19].	CUDA	threads	are	organized	into	a	hierarchy	structure,	i.e.,	multiple

threads	compose	a	block,	and	multiple	blocks	compose	a	grid	such	as	a	2D	matrix	(see	Fig.	11)	[22].	When	a	kernel	running	on	a	GPU,	SMs	are	in	charge	of	creating,	managing,	scheduling	and	executing	CUDA	threads	in	groups	(called

warps),	and	each	group	handles	32	parallel	threads.	However,	the	memory	capacity	and	parallel	computing	ability	of	a	single	GPU	are	still	limited	to	integrally	process	a	dataset	with	tens	of	gigabytes	(GB)	in	size	that	is	the	normal	size

required	for	current	large-scale	scientific	applications	[23].	For	example,	a	measured	dataset	extracted	from	the	micro-scale	surface	area	of	a	ceramic	femoral	head	articulate	is	49,152	152	×	×	49,152	in	size	(i.e.	total	12	12	GB	data

with	single	precision),	whereas	a	single	modern	GPU	GeForce	GTX	1080	selected	in	this	study	has	only	8	GB	GPU	memory	capacity,	so	this	12	12	GB	dataset	cannot	be	loaded	and	processed	at	a	same	time.	Although	the	more	expensive

high-end	GPUs	such	as	NVIDIA	TITAN	Xp	(12	12	GB	memory)	and	NVIDIA	TITAN	RTX	(24	24	GB	memory)	can	store	larger	datasets,	they	will	still	struggle	with	real-life	measurement	datasets	often	coming	in	its	hundreds	and	more	GB

of	data	sizes.	Moreover,	the	GPU	cards	have	fixed	CUDA	cores	(e.g.,	2560,	3840	and	4608	for	GTX	1080,	TITAN	Xp	and	TITAN	RTX,	respectively),	and	each	one	can	execute	a	hardware	thread,	so	threads	are	also	fixed	to	support

certain	number	of	 concurrent	computations.	Consequently,	a	 single	GPU	must	divide,	and	process	massive	 smaller	chunks	of	a	dataset	 iteratively,	which	may	greatly	 increase	 the	 latency	of	 intensive	computations.	 In	conclusion,

scientific	computations	with	big	data,	especially	for	applications	of	online	and	high	precision	surface	texture	measurement,	demand	distributed	computations	on	multi-GPUs.	With	complementary	optimization	strategies,	multi-GPUs

can	seamlessly	work	together	to	achieve	amazing	computational	performance,	but	the	multi-GPU	architecture	is	more	complicated	than	the	single	GPU,	and	it	brings	time	consuming	and	error	prone	processes	on	workload	partitions

and	allocations,	their	corresponding	synchronizations	and	communications	of	divided	data	chunks,	recombination	of	the	processed	data	chunks,	and	data	transfers	across	PCI-E	(Peripheral	Component	Interconnection	-	Express)	buses.

It	is	worth	mentioning	that	the	NVLink	connections	introduced	recently	have	approximate	10	times	higher	bandwidth	than	the	PCI-E	[24].	However,	NVLink	supports	the	high-end	GPUs	only	(e.g.,	TITAN	RTX	and	TESLA	P100),	and	it	is

normally	equipped	only	in	the	supercomputers.

Historically,	although	plentiful	and	concrete	researches	on	wavelet-based	filtering	theories	aroused	in	the	last	decades,	in	comparison,	their	practical	 implementations	on	computers	achieved	limited	success	due	to	the	key

challenge	of	computational	costs	for	wavelet	transforms.	In	general,	 the	 intensive	computation	of	DWT	through	its	 inherent	multi-level	data	decomposition	and	reconstruction	will	cause	drastically	reduction	of	 its	performance	for

online	applications	when	facing	large	data	size.	With	the	rapid	development	of	GPU	parallelism,	several	single	GPU	acceleration	solutions	have	been	explored	as	responses	to	this	challenge.	For	example,	Hopf	et	al.	accelerated	2D

DWT	on	a	single	GPU	card	by	using	OpenGL	APIs	in	2002,	and	consequently	this	resulted	in	the	beginning	of	GPU	based	DWT	acceleration	[25].	This	early	practice	adopted	the	traditional	“one-step”	method	rather	than	the	separable

two	steps	of	1D	DWT,	so	that	this	programming	model	was	not	flexible	and	generalizable	at	all,	i.e.,	each	kind	of	wavelet	transform	must	have	a	custom	implementation.	In	2007,	Wong	et	al.	optimized	Hopf's	work	by	using	shading

language	(named	as	“JasPer”),	and	 JasPer	used	shaders	 to	handle	multiple	data	streams	 in	pipelines	and	had	been	 integrated	 in	 JPEG2000	codec	 [26].	Notably,	 JasPer	decomposes	2D	DWT	 into	 two	steps	of	1D	DWT,	such	 that	 it

supports	dozens	of	wavelet	types	and	boundary	extension	methods	in	convolution	stage.	It	also	unified	the	calculation	methods	of	forward	and	inverse	2D	DWT.	For	Wong's	work,	due	to	the	limitations	on	GPU	programmability	and

hardware	structure	at	the	time,	the	convolution,	down	and	up	sampling	operations	were	executed	in	sequence	on	fragment	processors	of	an	early	GPU,	and	each	texture	coordinate	in	texture	mapping	must	be	pre-defined	in	separate

CPU	programs.	These	solutions	require	manual	mapping	operations	on	GPU	hardware,	and	task	partitioning	that	decides	which	part	of	the	work	should	be	conducted	on	a	CPU	and	which	part	will	be	fit	for	a	GPU	is	indispensable	in

these	practices	prior	to	the	emerging	of	unified	GPU	languages	such	as	CUDA.

Recently,	there	has	been	a	growing	interest	in	CUDA	based	GPGPU	computations	to	parallelize	the	DWT	for	scientific	and	big	data	applications.	Franco	et	al.	parallelized	a	2D	DWT	on	the	CUDA	enabled	GPU	NVIDIA	Tesla

C870	for	processing	images	and	achieved	a	satisfactory	speedup	of	26.81	times	faster	than	OpenMP	method	with	the	fastest	CPU	setting	at	the	time	[27].	Song	et	al.	accelerated	CDF	(9,	7)	based	SPIHT	(set	partitioning	in	hierarchical

trees)	 algorithm	 for	 decoding	 real-time	 satellite	 images	based	 on	 the	NVIDIA	Tesla	C1060,	which	 achieved	 speedup	of	 about	 83	 times	 compared	 to	 a	 single	 thread	CPU	 implementation	 [28].	 Later,	 Zhu	 et	 al.	 improved	 2D	DWT

computation	on	a	GPU	and	verified	it	with	a	case	study	of	the	ring	artifact	removal,	which	achieved	a	significant	performance	increase	[29].	Compared	with	previous	CUDA	enabled	GPU	implementations	of	DWT	that	only	parallelized	a

very	specific	type	of	wavelet	under	a	specific	circumstance	individually,	Zhu's	work	supports	different	types	of	wavelets	for	adapting	different	application	conditions.	In	addition,	the	latest	constant	memory	technique	has	been	applied

in	Zhu's	work	 to	 optimize	 the	 overall	GPU	memory	 access.	However,	 the	 shared	memory	 access	 and	CUDA	 streams	based	hide	 latency	mechanism	were	 ignored	 for	 further	 performance	 optimization	 in	 this	 research	 [19].	More

importantly,	the	first-generation	wavelet	theory	and	its	corresponding	algorithmic	operations	applied	in	the	convolution	scheme	of	these	researches	had	increased	the	computational	complexity	and	imposed	a	great	deal	of	memory	and



computational	time	consumption,	e.g.,	researchers	need	to	consider	the	troublesome	issue	of	boundary	destruction	inherent	in	the	Fourier	transform	[10].	The	second-generation	wavelet	theory	adopts	the	lifting	scheme	for	wavelet

decomposition	and	reconstruction,	which	preserves	all	application	characteristics	of	the	first-generation	wavelet	transform	while	bringing	higher	performance	and	lower	memory	demand	due	to	its	in-place	algorithm	property	[13].

These	previous	CUDA	acceleration	studies	chose	the	convolution	scheme	rather	than	lifting	scheme	because	the	execution	order	of	lifting	scheme	has	heavy	data	dependencies,	such	that	it	is	impossible	to	be	fully	parallelizable.	To

explore	CUDA	based	LWT	implementation,	in	2011,	Wladimir	et	al.	accelerated	the	LWT	algorithm	with	three-level	decompositions	and	reconstructions	of	an	1920	1920	×	×	1080	image	by	using	CUDA	version	2.1	on	NVIDIA	GeForce

8800	GTX	768 MB,	and	this	practice	achieved	a	speedup	of	10	times	compared	with	the	corresponding	CPU	(AMD	Athlon	64	64	×	×	2	Dual	Core	Processor	5200+)	implementation	[4].	Recently,	Later,	Castelar	et	al.	optimized	the	(5,	3)

biorthogonal	wavelet	transform	by	using	a	CUDA	in	application	of	the	parallel	decompression	of	seismic	datasets	[5].	Unfortunately,	the	further	parallel	optimization	of	LWT	in	these	studies	has	not	been	considered.

Previous	works	focus	on	parallelizing	data	processing	through	using	a	single	GPU	that	had	witnessed	a	moderate	performance	gain	across	board.	However,	due	to	the	limitation	of	data	storage	format	and	memory	space,	as

well	 as	 the	 fixed	number	of	CUDA	cores	 available	 on	a	 single	GPU	die,	 previous	works	 are	 still	 struggling	 to	 fulfill	 the	online	data	processing	 requirements	 from	many	 large-scale	 computational	 applications,	which	 is	 especially

problematic	for	processing	large	measured	surface	texture	data	engaging	complex	filtrations	with	various	tolerance	parameters	[1,30].	In	comparison,	multi-GPU	based	acceleration	solutions	can	be	flexible	and	extensible	for	achieving

higher	performance	with	relatively	low	hardware	costs.	Numerous	computational-intensive	issues	that	cannot	be	resolved	by	using	a	single	GPU	model	have	been	making	steady	progress	in	the	context	of	multi-GPUs.	For	instance,	FFT

(Fast	Fourier	Transform)	based	multi-GPU	solution	has	become	the	norm	 in	current	online	 large-scale	data	applications	 [31,32].	 In	 the	meantime,	several	multi-GPU	programming	 libraries	 (e.g.	MGPU)	 [33]	and	multi-GPUs	based

MapReduce	libraries	(e.g.	GPMR	and	HadoopCL)	[34,35]	had	been	developed	by	researchers.	Moreover,	deep	learning	which	is	very	popular	in	the	current	decade	also	has	benefited	from	the	fast	development	of	multi-GPU	techniques

[36,37].	These	pilot	multi-GPU	studies	are	based	on	the	assumptions	that	all	GPU	nodes	equipped	in	a	multi-GPU	platform	have	equal	computational	capacity.	In	addition,	task-based	load	balancing	schedulers	that	these	approaches

relied	upon	fall	short	to	support	applications	with	huge	data	throughputs	but	limited	processing	function(s)	since	there	are	very	few	“tasks”	to	schedule.	To	maximize	the	data	parallelism	in	a	heterogeneous	multi-GPU	system,	this

study	has	also	devised	an	innovative	data-oriented	dynamic	load	balancing	(DLB)	model	based	on	an	improved	FNN	for	rapid	measured	data	division	and	allocation	on	heterogeneous	GPU	nodes	[38].

In	summary,	 the	combination	acceleration	optimizations	merging	both	the	parallelized	architecture	of	multi-GPUs	and	 improvements	 from	the	aspects	of	LWT	and	software	routines	seamlessly	together	(e.g.,	 the	algorithm

optimization	of	lifting	scheme	,	comprehensive	memory	usage	optimization	based	on	the	advanced	hierarchal	architecture	of	CUDA	memory,	and	the	latency	hide	mechanism	based	on	CUDA	multi-streams)	were	largely	ignored.	To

solve	these	shortcomings,	this	study	explores	and	implements	a	generic	parallel	computational	framework	for	the	lifting	wavelet	transform	(GPCF-LWT)	based	on	a	heterogeneous	CUDA	multi-GPU	system.	It	 further	optimized	the

acceleration	 of	 2D	 LWT	 through	 the	 improved	 processing	model	 of	 lifting	 scheme	 (LBB	 and	 improved	 algorithm	 of	 lifting	 scheme),	 the	 devised	 three	 implementation	 optimization	 strategies	 and	 the	 improved	 DLB	model	 on	 a

heterogeneous	multi-GPU	 system.	Moreover,	 GPCF-LWT	 can	 support	 the	 whole	 kind	wavelet	 transforms,	 thereby	 supporting	 intelligent	 wavelet	 transform	 selections	 in	 accordance	with	 different	 surface	 texture	 characterization

requirements	and	measurement	strategies.

3	The	second-generation	wavelet
The	fundamental	 idea	behind	wavelet	analysis	 is	to	simplify	complex	frequency	domain	analyses	into	simpler	scalar	operations.	The	first-generation	wavelet	applies	fast	wavelet	transform	to	enable	decomposition	(forward

DWT)	 and	 reconstruction	 (inverse	DWT)	 in	 the	 form	of	 a	 two-channel	 filter	 banks,	 or	 the	 so-called	Mallat	 convolution	 scheme	 [39].	Mallat	wavelet	 decomposition	 and	 reconstruction	 convolve	 the	 input	 and	 output	 data	with	 the

corresponding	 decomposition	 and	 reconstruction	 filter	 banks	 respectively,	 so	 it	 has	 become	 a	 popular	 choice	 for	many	 engineering	 applications	 in	 recent	 years.	However,	Mallat	 algorithm	has	 a	 certain	 degree	 of	 computational

complexity	(e.g.	it	has	inherent	boundary	destruction	when	executing	FFT).	Thus,	Sweldens	proposed	a	new	implementation	of	DWT,	i.e.	lifting	scheme	or	the	second-generation	wavelet.

The	 second-generation	wavelet	 that	 uses	 the	 lifting	 scheme	 for	wavelet	 decomposition	 and	 reconstruction	 preserves	 all	 properties	 of	 the	 first-generation	wavelet,	 but	 brings	 higher	 computational	 performance	 and	 lower

memory	demand	because	of	its	in-place	algorithm	attribute	[13].	The	lifting	scheme	based	1D	forward	(i.e.	decomposition)	DWT	(abbreviated	as	forward	LWT	or	FLWT)	contains	four	operation	steps:	split,	predict,	update	and	scale

[4,13,40]:

1) 	Split:	This	step	splits	the	raw	signal	into	two	subset	coefficients,	i.e.	even	and	odd,	and	the	former	corresponds	to	the	even	index	values	while	the	latter	is	the	odd	index	values.	The	split	method	is	expressed	in	Eq.	(1),	and	it	is	also	called	as	“lazy

wavelet”.

2) 	Predict:	For	the	coefficients	of	even	and	odd,	it	can	predict	odd	coefficients	from	the	even	by	using	the	prediction	operator	PO,	and	then	replace	the	old	odd	values	by	the	predicted	result	as	the	next	new	odd	coefficients,	recursively,	and	this	step

(1)



can	be	expressed	as	Eq.	(2).	The	odd	is	the	same	as	the	detail	coefficients	D	in	Mallat	algorithm.

3) 	Update:	Similarly,	it	can	update	even	by	using	the	update	operator	UO,	and	then	replace	the	old	even	values	by	the	updated	result	as	the	next	new	even	coefficients,	recursively,	and	this	step	can	be	expressed	as	Eq.	(3).	The	even	is	the	same	as	A

in	Mallat	algorithm.

4) 	Scale:	Normalize	even	and	odd	coefficients	with	factor	K	respectively	by	using	Eq.	(4)	to	get	the	final	approximation	coefficients	(evenApp)	and	the	detail	coefficients	(oddDet).

All	operators	are	completed	in	the	in-place	computational	mode	based	on	these	four	steps.	Fig.	1	illustrates	the	split	operator	with	in-place	mode,	in	this	case,	the	raw	data	should	be	split	into	even	and	odd	subsets	which	are

organized	and	stored	in	the	first	half	and	the	second	half	of	the	memory	space	respectively	that	is	the	same	space	for	raw	data	storage.	Similarly,	prediction,	update	and	scale	results	are	stored	in	their	original	memory	spaces	rather

than	allocating	new	memories,	such	that	lifting	scheme	requires	less	memory	consumption	than	the	classic	Mallat	algorithm.	Furthermore,	the	1D	inverse	lifting	scheme	(i.e.	reconstruction)	DWT	(abbreviated	inverse	LWT	or	ILWT)	just

inverse	the	computational	sequence	of	operation	steps	of	FLWT	and	switch	the	corresponding	plus	and	subtraction	operators:

Scale:

Update:

Predict:

Merge:	This	step	is	also	called	as	“inverse	lazy	wavelet”,	and	it	can	be	expressed	by:

The	lifting	scheme	can	dynamically	update	configuration	parameters	(i.e.	iterative	number	and	wavelet	filter	coefficients)	in	each	computational	step	of	DWT	based	on	factorizations	of	the	polyphase	matrixes	of	wavelet	filter

coefficients,	such	that	the	generalization	of	this	framework	can	be	guaranteed	to	realize	the	parallel	computations	for	all	kinds	of	wavelet	transforms	dynamically.	Generally,	the	factorization	of	polyphase	matrix	P(z)	for	all	wavelets	can

be	described	as	the	following:

where	coefficients	of	ui(z)	are	update	coefficients	 in	 the	update	step	and	coefficients	of	pi(z)	are	prediction	coefficients	 in	 the	prediction	step	 in	Figs.	2	and	3,	and	K	 is	 the	 scale	 factor.	 In	 a	 conclusion,	 the	 computational	 results

(2)

(3)

(4)

Fig.	1	The	computation	of	split	operation	with	in-place	mode.

alt-text:	Fig	1
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of	both	forward	and	inverse	LWT	for	arbitrary	wavelet	can	be	obtained	by	applying	several	steps	of	prediction	and	update	operations	and	imposing	the	final	normalization	with	K	on	the	outputs	of	factorization	of	P(z).	Figs.	2	and	3

illustrate	the	main	computational	processes	of	single-level	1D	forward	and	inverse	LWT	respectively.

4	CUDA	based	GPCF-LWT	implementation
Based	on	 the	 fundamental	LWT	concepts	 summarized	 in	Section	3,	 this	 study	proposes	GPCF-LWT	by	using	CUDA	enabled	GPUs	 for	 online	 and	high	precision	 surface	measurement	 applications.	This	 study	assumes	 that

factorizations	of	polyphase	matrixes	of	a	the	wavelet	filter	coefficients	have	been	prepared	before	applying	the	GPCF-LWT,	so	that	we	have	got	a	series	of	update	coefficients	U = {u0,	u1,	…	 ,	un},	a	series	of	prediction	coefficients

P = {p0,	p1,	…	,	pn},	and	also	the	scale	factor	K.

The	traditional	parallel	computational	platforms	(e.g.	OpenMP,	MPI	and	FPGA)	have	empowered	three	classic	LWT	parallel	computational	models,	namely,	the	RC	(Row-Column),	LB	(Line-Based)	and	BB	(Block-Based)	models

[41].	Generally	speaking,	the	LB	model	has	the	best	instruction	throughput,	followed	by	the	BB	and	RC	models	[4].	Unfortunately,	except	for	the	shortest	wavelets	(e.g.,	the	Haar	wavelet),	both	LB	and	BB	models	had	failed	to	be

transplanted	on	the	single	CUDA	GPU	due	to	the	space	limitation	of	current	shared	memory,	and	the	generalization	of	LWT	(i.e.,	supporting	all	kinds	of	wavelet	transforms)	also	cannot	be	satisfied.	Although	RC	model	 is	the	only

feasible	CUDA	GPU	transplantation	that	supports	the	generalization	of	LWT,	the	processing	time	of	CUDA	based	RC	model	is	approximately	4	times	slower	than	the	Mallat	algorithm	solution	running	on	the	same	GPU	card	[42].	Thus,

based	on	the	in-depth	study	of	these	three	models,	this	study	devised	a	generic	LWT	parallel	computational	model	for	the	CUDA	enabled	GPU	architecture.

4.1	The	improved	parallel	computational	model
• 	The	LB	model.	On	traditional	parallel	computational	platforms	(e.g.,	OpenMP,	MPI	and	FPGA),	the	overall	framework	of	LB	based	LWT	is	depicted	in	Fig.	4.	The	LB	model	divides	a	raw	dataset	(e.g.,	1024 × 1024	in	size)	into	N	(N	equals	to	the	number	of	computational

nodes)	smaller	subsets	(e.g.,	if	N	is	4,	each	subset	has	256	rows	and	1024	columns),	and	each	subset	will	be	allocated	on	a	computational	node	where	LB	performs	the	following	operations:

1) Lunching	m	threads,	and	each	one	performs	horizontal	1D	LWT	for	each	row	of	the	target	subset	concurrently	(i.e.,	each	thread	processes	a	row	of	the	target	subset.)	and	then	the	LB	caches	the	temporary	results	in	the	local	memory	(e.g.,	a	RAM—random	access	memory);

2) Once	the	m	rows	are	completely	processed,	the	m	threads	perform	vertical	1D	LWT	on	m	columns	of	temporary	results	concurrently	and	repeatedly	until	all	columns	of	the	cached	temporary	results	have	been	processed.	In	this	step,	the	iterative	times	are	(width + m–1)	/	m,	and	each	iteration

processes	m	columns.

3) Steps	1	and	2	maintain	an	integrated	iteration	that	will	be	repeated	until	all	rows	and	columns	of	the	target	subset	are	processed.

Fig.	2	The	main	computational	procedure	of	single-level	1D	forward	LWT.

alt-text:	Fig	2

Fig.	3	The	main	computational	procedure	of	single-level	1D	inverse	LWT.

alt-text:	Fig	3



The	last	step	of	LB	based	LWT	is	that	one	node	(usually	called	a	master	node)	merges	the	results	of	N	subsets	and	then	obtains	the	final	result.	The	minimum	value	of	m	is	determined	by	a	particular	type	of	wavelet,	e.g.,	3	for	Haar	and	6	for	Deslauriers-

Dubuc	(13,	7).	Generally,	m	can	be	unified	as	a	fixed	value	(e.g.,	10	or	20)	that	larger	than	all	types	of	wavelets	needed.	Taking	m = 10	for	a	float	dataset	having1024	columns	as	an	example,	each	computational	node	requires	40 KB	local	memory	space,	so	LB	model

can	be	easily	implemented	on	OpenMP,	MPI	and	FPGA	since	they	have	large	RAM	spaces.	However,	a	CUDA	block	has	only	16 KB	local	memory	(shared	memory)	space	that	cannot	satisfy	the	memory	demand	of	LB	model	except	for	the	shortest	wavelet	(e.g.,	Haar

wavelet	requires	only	12 KB	shared	memory	space).	In	addition,	columns	of	a	dataset	cannot	be	divided	by	LB,	so	it	is	a	coarse-grained	division	approach,	which	cannot	operate	well	with	the	SIMD	of	CUDA.

• 	The	BB	model.	Unlike	LB,	the	BB	model	divides	a	raw	dataset	into	N	subsets	(data	blocks)	from	both	row	and	column	directions,	see	Fig.	5.	Each	subset	is	allocated	on	a	computational	node	where	RC	routine	performs	horizontal	1D	LWT	for	all	rows	concurrently	at

first,	and	then	vertical	1D	LWT	for	all	columns	will	be	computed	concurrently.	Like	LB	model,	the	master	node	will	merge	all	results	of	subsets	at	the	last	step	of	BB	model.	The	BB	model	is	also	a	coarse-grained	division	approach,	and	it	also	requires	a	great	deal	of

local	memory	space,	e.g.,	if	a	raw	float	dataset	with	1024 × 1024	in	size	is	divided	into	four	subsets	(each	subset	has	512	rows	and	512	columns),	each	computational	node	requires	1024 KB	local	memory	space	that	considerably	exceed	the	size	of	a	shared	memory

space	of	a	CUDA	GPU,	such	that	classic	RC	model	based	CUDA	solutions	must	use	a	GPU	global	memory	space	as	the	temporary	caches,	and	it	has	become	the	key	bottleneck	for	data	access.

• 	The	innovative	LBB	model	for	CUDA	LWT.	To	solve	the	problem	of	shared	memory	shortage	on	CUDA	GPUs,	this	study	devised	an	innovative	parallel	computational	model	for	2D	LWT-LBB	by	combining	both	LB	and	BB.	The	main	overall	framework	of	LBB	model	is

shown	as	in	Fig.	6.	The	LBB	model	divides	a	raw	dataset	into	several	subsets	from	the	column	direction,	and	each	subset	can	be	assigned	with	a	CUDA	thread	block	(e.g.,	8	rows	and	32	columns	in	size)	where	the	in-built	threads	perform	the	following	operations:

1) Each	group	of	concurrent	row	threads	loads	a	row	of	a	dataset	into	the	shared	memory	of	a	GPU	in	parallel.	Accesses	of	a	row	data	can	be	coalesced	since	all	threads	in	a	block	access	the	continuous	relative	addresses	[19],	so	it	is	very	efficient	to	load	a	dataset	into	a	shared	memory	space.

2) Each	group	of	concurrent	row	threads	in	a	block	performs	horizontal	1D	LWT	on	a	data	row	in	parallel,	and	then	the	GPU	caches	the	temporary	results	in	its	shared	memory	space.

3) 	m	groups	of	row	threads	get	m	row	temporary	results	in	parallel	by	executing	steps	1	and	2	(m	is	a	preset	value,	and	it	is	8	here).

4) Each	group	of	concurrent	column	threads	in	a	block	performs	vertical	1D	LWT	on	a	data	column	of	the	cached	temporary	results	in	parallel,	and	width/n	groups	of	column	threads	process	width/n	columns	of	cached	temporary	results	in	parallel	(width/n	is	the	width	of	a	subset).

5) The	corresponding	column	thread	groups	save	the	results	into	a	GPU	global	memory	space	and	delete	the	m	row	temporary	results	in	the	shared	memory	space	got	by	step	3.

6) Steps	1–5	maintain	a	complete	iteration	that	will	be	repeated	until	all	rows	and	columns	of	a	dataset	are	processed.

The	two	differences	of	data	division	methods	for	BB	and	LBB	are:	1)	In	order	to	adapt	the	advanced	architecture	of	CUDA	threads,	the	height	of	a	subset	in	LBB	is	larger	than	BB	whereas	the	width	for	LBB	is	smaller	than	BB,	and	the	number	of	subsets	of

LBB	is	far	larger	than	BB	as	the	number	of	thread	blocks	is	far	more	than	computational	nodes	in	those	traditional	parallel	platforms.	Steps	1–6	of	LBB	also	integrated	the	LB	idea	with	the	one	major	update:	Instead	of	providing	a	thread	for	a	row,	LBB	constructs	the

thread	block	structure	based	on	numerous	CUDA	threads	(each	thread	block	organize	m	groups	of	concurrent	row	threads,	and	each	group	of	row	thread	has	width/n	CUDA	threads,	e.g.	32	CUDA	threads	in	each	row),	such	that	a	thread	block	can	perform	both

horizontal	1D	LWT	on	multiple	rows	by	using	groups	of	row	threads	and	vertical	1D	LWT	on	multiple	columns	by	using	groups	of	column	threads	in	parallel.

Although	LBB	divides	a	large	dataset	into	several	smaller	subsets,	the	problem	of	shared	memory	shortage	is	still	notable,	e.g.,	it	requires	64 KB	shared	memory	space	if	a	subset	has	size	128 × 128.	Thus,	the	sliding	window	structure	has	been	designed	in

LBB,	see	Fig.	6.	In	LBB,	the	size	of	a	sliding	window	is	equal	to	a	constructed	thread	block	(e.g.	8 × 32	for	a	subset	128 × 128),	i.e.,	a	sliding	window	is	built	on	a	thread	block,	and	each	subset	has	a	sliding	window.	Once	a	sliding	window	is	full	(e.g.,	there	are	8	rows

of	temporary	results	cached	in	a	shared	memory	space),	column-based	vertical	1D	LWT	will	be	carried	out	(i.e.	steps	4	and	5),	and	then	LBB	moves	down	a	sliding	window	on	the	target	subset	to	compute	and	cache	other	data	points	(or	pixels)	of	other	thread	blocks

concurrently	by	moving	the	throw	block	to	process	the	next	8	rows	(starting	from	Step	1).

• 	Performance	analysis.	Taking	the	CDF	(9,	7)	wavelet	as	an	example	to	evaluate	the	CGMA	(Compute	to	Global	Memory	Access)	(i.e.,	an	index	to	estimate	the	radio	of	instruction	throughput	and	global	memory	accesses	for	performance	analysis	[22])	with	LBB,	it

requires	18	times	of	computational	operations	for	performing	2D	DWT	on	a	data	point,	including	16	times	of	multiplications	and	2	times	of	additions,	and	4	times	of	global	memory	accesses	(2	times	of	read	and	write	respectively),	by	assuming	that	the	size	of	a	slide

window	is	8 × 32	and	each	thread	processes	a	data	point	in	parallel,	such	that	the	CGMA	is:

Compared	with	the	RC	model	(CGMA	is	0.9),	LBB	has	been	increased	by	10	times.

(10)



4.2	The	improved	lifting	scheme
In	a	GPU	routine,	the	LWT	requires	lots	of	synchronizations	as	every	implementation	procedure	of	the	lifting	scheme	has	different	functions	computing	in	sequence,	and	it	decreases	the	parallelizability	of	LWT	computations.	To

solve	this	problem,	this	study	devised	an	improved	approach	to	decrease	the	inherent	synchronizations	of	lifting	scheme.	The	factorization	of	polyphase	matrix	P(z)	(see	Eq.	(11)Eq.	(9))	can	be	converted	into	the	following	form:

where	n = m	if	u0(z) = 0	and	n = m-1	if	u0(z)	≠	0.	According	to	Eq.	(13)Eq.	(11),	the	optimized	operation	steps	of	the	lifting	scheme	based	1D	forward	LWT	are	shown	as	the	follows:

Fig.	4	The	overall	framework	of	LB	model.

alt-text:	Fig	4

Fig.	5	The	overall	framework	of	BB	model.

alt-text:	Fig	5

Fig.	6	The	overall	framework	of	LBB	model.

alt-text:	Fig	6
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(1) 	Split:

(2) 	Preprocessing:

(3) 	Lifting	(predict	and	update):	for	i = 1,	…	,	n,	then:

(4) 	Scale:

The	step	3	is	performed	iteratively.	However,	synchronization	operations	still	exist	in	step	3	since	the	computation	of	si	can	only	begin	after	the	di	computation	due	to	si	relies	on	di.	Thus,	Eq.	(16)Eq.	(14)	should	be	modified	as	the

followsing:

It	can	be	seen	from	Eq.	(18)Eq.	(16),	the	computation	of	si	no	longer	relies	on	di,	and	si	and	di	only	relay	on	si-1	and	di-1	respectively,	so	that	the	corresponding	computational	operations	can	be	performed	concurrently	to	decrease

half	of	the	synchronizations	required	in	lifting	scheme.	The	main	computational	procedure	of	single	-level	1D	forward	LWT	is	demonstrated	in	Fig.	7	that	is	optimized	from	Fig.	2.	The	inverse	LWT	has	the	similar	optimization	approach.

4.3	The	construction	of	the	single	GPU-based	GPCF-LWT
Before	realizing	parallel	computations	of	 the	single-level	1D	LWT	by	using	 the	GPCF-LWT,	a	 series	of	prediction	coefficients	P = {p0,	p1,	…	 ,	pn}	and	update	 coefficients	U	=	{u0,	u1,	…	 ,	un}	must	 be	 generated	 successively

according	to	the	given	name	of	a	wavelet	in	order	to	ensure	the	generalization	of	the	GPCF-LWT.	P	and	U	are	2D	arrays	with	the	same	length	n,	and	P[i]	and	U[i]	correspond	to	prediction	and	update	coefficients	for	the	ith	predication

and	update	operations	respectively.	Within	the	GPCF-LWT,	P	and	U	serve	as	input	parameters	reflecting	different	wavelet	types,	such	that	GPCF-LWT	can	support	the	whole	family	of	LWT.	Based	on	LBB	and	the	improved	lifting	scheme,

Fig.	8	illustrates	the	main	computational	procedure	of	multi-level	2D	forward	LWT	proposed	in	this	study.	It	needs	to	generate	a	series	of	P	(a	2D	array)	and	U	(a	2D	array)	according	to	the	given	name	of	a	wavelet,	and	then	copy	these

prediction	and	update	coefficients	together	with	the	raw	2D	signal	data	from	a	CPU	memory	space	to	a	GPU	global	memory	space,	and	a	specific	designed	CUDA	stream	overlapping	strategy	for	increasing	the	concurrency	of	this	step

(12)

(13)

(14)

(15)
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Fig.	7	The	improved	lifting	scheme	for	single	-level	1D	forward	LWT.

alt-text:	Fig	7



is	presented	in	Section	4.4.	In	Fig.	8,	the	output	results	cA,	cH,	cV,	and	cD	correspond	to	the	approximation	coefficients	and	detail	coefficients	along	horizontal,	vertical,	and	diagonal	orientations	respectively.	Multi-level	2D	LWT	applies

the	approximation	coefficients	cA	as	a	2D	raw	input	signal	 for	the	next	computational	 level,	and	then	a	new	2D	forward	LWT	iteration	with	the	same	computational	steps	and	computational	parameters	as	 its	previous	 level	will	be

started	 on	 this	 level.	 In	 this	way,	 this	 procedure	will	 be	 executed	 recursively	 until	 the	 expected	 level	 has	 reached,	 and	 the	 final	 results	 are	 the	 cA	 of	 the	 last	 level	 and	 all	 detail	 coefficients	 cH,	 cV,	 and	 cD	 collecting	 from	 each

computational	level.	The	computational	framework	of	LBB	based	inverse	LWT	can	be	constructed	in	the	similar	way	of	Fig.	8.

In	this	case,	a	raw	surface	measured	dataset	will	be	divided	into	several	small	data	chunks	which	will	be	further	parallelized	by	applying	the	pipeline	overlapping	strategy	(see	Section	4.4).	A	host	function	(i.e.,	the	forward	and

inverse	scheduler)	executing	on	a	CPU	is	responsible	for	launching	the	Predict()	and	Update()	kernels	on	a	GPU	iteratively	according	to	the	series	of	prediction	and	update	coefficients.	Fig.	9	shows	that	a	2D	LWT	on	GPCF-LWT	has	been

realized	through	separating	it	into	two	1D	LWT	from	the	row	and	column	orientations	respectively,	and	multi-level	LWT	has	been	implemented	by	applying	the	single	-level	LWT	recursively.	Once	the	final	results	are	obtained,	inverse

LWT	can	be	performed	to	reconstruct	the	filtrated	engineering	surfaces	(e.g.	roughness	and	waviness).

GPCF-LWT	supports	the	whole	family	of	wavelet	transforms	based	on	LBB	and	the	improved	lifting	scheme.	This	paper	presents	two	examples	(Haar	and	CDF	(9,	7)	wavelets)	to	show	the	realization	of	LWT	with	any	specific

Fig.	8	The	main	computational	procedure	of	improved	lifting	scheme	with	LBB	for	multi-level	2D	forward	LWT.
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Fig.	9	An	implementation	overview	of	the	GPCF-LWT	on	a	single	GPU	card.
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wavelet	by	using	GPCF-LWT	generically.	One	ofThe	factorizations	of	polyphase	matrixes	of	wavelet	filter	coefficients	conforming	to	the	improved	lifting	scheme	can	be	written	as	the	Eqs.	(19)Eqs.	(17)	and	(20)(18)	for	Haar	and	CDF	(9,	7)

respectively.

According	to	Eqs.	(19)Eqs.	(17)	and	(20)(18),	P,	U	and	K	for	Haar	and	CDF	(9,	7)	respectively	can	be	acquired	from	the	following	Eqs.	(21)Eqs.	(19)	and	(22)(20).

The	coefficients	U0	of	both	Haar	and	CDF	(9,	7)	are	zero,	so	the	optimized	computational	procedure	of	single-level	1D	forward	LWT	can	be	devised	as	Fig.	13	Fig.	10	where	a	host	 function	 is	responsible	 for	scheduling	the

executions	of	predict	and	update	kernels	and	providing	different	configuration	and	computational	parameters	for	different	types	of	wavelets,	and	the	corresponding	predict	and	update	kernels	are	executed	on	a	GPU	card	in	parallel.

The	left	side	of	Fig.	10	illustrates	the	computational	procedure	of	Haar	wavelet	transform,	and	CDF	(9,	7)	wavelet	is	illustrated	on	the	right	side.	The	inverse	LWT	implementations	of	Haar	and	CDF	(9,	7)	are	similar	as	the	forward

implementations,	which	just	inverse	the	corresponding	sequences	of	operation	steps	of	forward	computations	and	switch	the	corresponding	plus	and	subtraction	operators.

(17)

(18)

(19)

(20)

Fig.	10	The	scheduling	algorithm	of	a	single-level	1D	forward	LWT.



4.4	Three	optimization	strategies	for	GPCF-LWT	implementation	on	a	single	GPU	card
The	GPCF-LWT	further	explores	three	implementation	optimizations	on	a	single	GPU	by	seamlessly	integrateing	the	GPCF-LWT	implementation	with	the	latest	CUDA	GPU	hardware	advancements	to	maximize	the	parallelization

of	generic	2D	LWT	computations:

1) 	GPCF-LWT	provides	an	optimization	strategy	that	enable	dynamic	configurations	of	execution	parameters	of	kernels	based	on	the	CUDA	thread	hierarchy.	In	CUDA	programs,	a	thread	block	must	be	loaded	into	a	SM	inseparably,	and	threads	in	a	block	will	be	further

encapsulated	into	several	warps.	A	SM	executes	all	its	warps	(e.g.,	4	warps	in	Fig.	11)	conforming	to	SIMD	(Single	Instruction,	Multiple	Data)	model,	such	that	all	threads	in	a	warp	share	same	program	instructions	but	to	process	different	data	at	the	same	time.

Another	inactive	warp	will	be	activated	from	the	inactive	state	when	an	active	warp	in	the	same	SM	is	pending	(e.g.,	a	warp	will	be	pending	when	it	needs	to	access	data	from	the	global	memory	as	it	generally	requires	400–600	cycles)	in	order	to	hide	memory	latency

[20,21].	Thus,	it	is	of	vital	importance	to	configure	the	number	of	CUDA	threads	in	a	block	and	organize	them	in	an	appropriate	hierarchy	structure	(i.e.	setup	applicable	block	and	grid	sizes)	for	each	kernel,	such	that	SMs	can	have	just	enough	warps	to	schedule	while

limiting	the	complexity	of	thread	management.	Ideally,	the	number	of	threads	in	a	block	must	be	an	integral	multiple	of	32	to	match	the	fact	that	each	warp	has	32	threads	for	32	CUDA	cores	in	CUDA	GPUs,	so	each	SM	can	be	possibly	arranged	with	just	enough

number	of	warps.	In	practice,	SM	may	reduce	the	number	of	blocks	during	run	time	when	too	many	CUDA	threads	are	organized	in	a	block	and	each	thread	occupies	too	many	registers	or	a	large	shared	memory	space,	and	it	often	leads	to	the	vital	problem	that	there

are	not	enough	warps	to	be	scheduled.	With	these	considerations,	this	study	had	tested	and	evaluated	the	underlying	relationship	between	the	different	number	of	threads	in	a	block	and	the	hardware	consumption	of	GPCF-LWT,	which	found	that	the	occupancy	of

CUDA	cores	in	a	SM	can	come	up	to	100%	when	we	configure	256	threads	per	block	in	the	GPCF-LWT.	Thus,	the	block	number	(grid	size,	bn)	of	LWT	is	bn = (sn+256–1)/256	where	sn	is	the	length	of	input	data,	such	that	the	bn	with	each	block	having	256	threads	can

keep	all	SMs	of	a	GPU	card	busy	all	the	time,	and	hide	the	delay	caused	by	data	transfers.	To	test	and	evaluate	the	validity	and	practicality	of	this	implementation,	this	study	has	compared	the	effects	of	different	number	of	threads	in	a	block	to	find	the	inherent

correlation	between	the	number	of	configured	threads	in	a	block	and	the	processing	time.	Fig.	12	lists	the	processing	time	for	different	numbers	of	threads	in	a	block	for	4	-level	2D	LWT	with	data	size	of	4096 × 4096	running	on	a	single	GTX	1080	GPU	card	(the

hardware	specification	can	be	seen	in	Table	3).	Fig.	12	shows	that	GPCF-LWT	can	gain	the	minimum	processing	time	when	the	number	of	threads	in	a	block	is	set	to	256.

2) 	GPCF-LWT	has	developed	a	hierarchical	memory	usage	scheme	for	generic	LWT	computations	based	on	the	CUDA	GPU	memory	hierarchy.	CUDA	adopts	a	SPMD	(Single	Program,	Multiple	Data)	programming	model	and	provides	a	sophisticated	memory	hierarchy	(i.e.

register,	local	memory,	shared	memory,	global	memory,	texture	memory	and	constant	memory,	etc.).	Hence,	a	GPU	can	achieve	high	data	accesses	through	elaborately	designed	CUDA	codes	empowered	by	the	efficient	usages	of	different	memories	according	to	the

respective	data	features,	including	access	mode,	size	and	format.	GPCF-LWT	calls	the	CUDA	API	function	cudaHostAlloc()	rather	than	malloc()	to	allocate	a	CPU	host	memory	in	page-locked	memory	or	pinned	memory	mode	that	can	support	DMA	(Direct	Memory

Access)	without	requiring	to	allocate	additional	buffers	for	caching	data.	Compared	with	page-able	memory	mode,	the	page-locked	mode	transfers	data	directly	from	a	CPU	host	memory	space	to	a	GPU	global	memory	space,	so	the	write	speed	of	it	is	1.4	times	faster

and	read	speed	is	1.8	times	faster	than	page-able	mode	[21].	However,	the	pinned	memory	should	not	be	overused	for	its	scarcity	that	leads	to	reduced	performance.	With	this	in	mind,	this	study	pre-allocates	a	fixed	size	pinned	memory	in	the	initialization	stage	and

reuse	it	during	the	whole	computational	life-cycle,	such	that	it	maintains	high	memory	performance	throughout.	Moreover,	GPCF-LWT	uses	the	shared	memory	of	a	GPU	for	executing	kernels,	and	instead	of	direct	data	accesses	from	a	GPU	global	memory,	a	single	data

point	will	be	loaded	into	a	shared	memory	space	of	a	SM	once	and	only	once	from	the	global	memory,	and	then	any	loaded	data	point	can	be	accessed	by	several	CUDA	threads	simultaneously	in	a	very	fast	speed	(generally	it	only	requires	1–32	cycles).	In	comparison,

data	access	speed	of	a	global	memory	will	be	dramatically	reduced	when	several	threads	access	the	same	data	point	in	a	global	memory	space	repeatedly,	and	registers	were	also	not	applied	here	for	the	similar	reason	[20].	Another	major	reason	for	using	the	shared

memory	is	that	row	addresses	in	a	global	memory	are	aligned,	such	that	the	operation	that	32	CUDA	threads	in	a	warp	loading	data	continuously	from	the	global	memory	can	be	coalesced,	i.e.,	loading	32	data	points	into	a	warp	needs	the	global	memory	access	only

once	rather	than	32	accesses	in	sequence,	so	this	coalescing	can	enhance	the	data	transfer	bandwidth.	Another	important	issue	is	that	where	to	store	and	access	P	and	U,	the	constant	memory	or	the	global	memory.	Although	both	the	constant	memory	and	global

memory	are	in	the	same	physical	location	of	the	GPU	hardware	architecture,	the	time	consumption	for	accessing	a	data	point	from	a	constant	memory	can	be	much	faster	than	a	global	memory	due	to	its	inherent	cache	and	broadcast	mechanisms.	For	instance,	a	data

point	can	be	loaded	from	the	cache	of	a	constant	memory	when	it	is	a	cache	hit,	and	it	just	costs	one	cycle	in	general.	Broadcast	is	another	very	useful	tool	to	reduce	data	access	delay,	which	means	that	a	data	point	loaded	by	a	thread	will	be	broadcasted	to	all	the

other	threads	of	a	wrap.	Thus,	accessing	a	data	point	from	a	constant	memory	can	be	as	fast	as	a	register	when	all	threads	of	a	warp	access	the	same	data	point	[21,43].	In	this	study,	all	CUDA	threads	use	the	same	values	of	P	and	U,	and	they	are	constant	and	will	not

be	changed	during	performing	PO	and	UO,	such	that	the	fast	data	accesses	can	be	achieved	by	storing	and	accessing	P	and	U	sets	in	a	constant	memory	space.	All	in	all,	the	memory	hierarchy	of	GPCF-LWT	for	generic	LWT	computations	can	be	organized	as	Fig.	13.

To	test	and	evaluate	the	validity	and	practicality	of	this	hierarchical	memory	usage	scheme	of	GPCF-LWT,	this	study	analyzed	the	performance	factors	influencing	the	2D	LWT	computation	on	different	memory	spaces.	Firstly,	this	experiment	tested	and

compared	the	bandwidth	by	using	the	pinned	and	page-able	memory	mode	respectively	by	transferring	1GB	measured	data	from	both	H2D	(from	a	CPU	host	memory	space	to	a	GPU	global	memory	space)	and	D2H	(from	a	GPU	global	memory	space	to	a	CPU	host

memory	space)	directions.	In	Fig.	14,	the	bandwidth	of	pinned	memory	mode	gains	approximately	55%	improvement	compared	with	the	page-able	memory	mode.	Then,	the	experiment	tested	and	compared	the	computational	performances	between	the	proposed

hierarchical	memory	usage	scheme	and	the	pure	global	memory	usage.	In	the	pure	global	memory	solution,	all	data	(raw	measured	datasets,	P,	U,	intermediate	results	and	the	filtration	output	results)	are	stored	in	the	global	memory.	In	contrast,	the	proposed	scheme

stores	different	datasets	in	different	memory	spaces,	i.e.,	 it	applies	the	global	memory	space	to	store	the	raw	measured	datasets	and	the	filtration	results,	and	the	shared	memory	space	to	cache	subsets	and	the	temporary	results,	which	put	P	and	U	coefficient

instances	in	the	constant	memory	space.	Fig.	15	illustrates	the	processing	times	of	these	two	solutions,	and	it	can	be	seen	from	the	experimental	results	that	the	proposed	scheme	gains	about	50%	computational	performance	enhancement.

3) 	GPCF-LWT	enables	a	pipeline	overlapping	strategy	by	using	CUDA	streams.	CUDA	GPU	provides	a	non-blocking	asynchronous	execution	mode	for	GPU	kernels,	such	that	the	host	codes	on	a	CPU	and	CUDA	codes	on	a	GPU	can	be	executed	concurrently.	Based	on	this
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consideration,	this	study	derives	a	CUDA	stream	overlapping	strategy	that	can	effectively	alleviate	the	delay	imposed	by	scheduling	the	sequential	order	of	execution	of	the	lifting	scheme.	Each	pipeline	manages	a	CUDA	stream,	and	a	pipeline	can	organize	n	kernels

running	on	it	in	different	time	slices,	i.e.,	a	pipeline	will	active	and	run	another	kernel	automatically	when	a	kernel	is	pending	[19].	Pure	CUDA	programs	based	on	the	non-overlapping	model	are	variants	of	the	following	fundamental	three	stages:	(1)	transferring	a	raw

dataset	from	a	CPU	host	memory	space	to	a	GPU	global	memory	space	through	PCI-E	buses	(i.e.,	H2D	data	transfers);	(2)	processing	the	raw	dataset	via	a	specific	algorithm—GPU	kernel	executions	(e.g.,	2D	LWT);	(3)	transferring	output	results	from	the	GPU	global

memory	space	to	the	CPU	host	memory	space	(D2H	data	transfers).	Obviously,	both	stages	of	data	transfers	(i.e.	H2D	and	D2H)	and	kernel	executions	for	data	processing	are	time-consuming.	More	significantly,	these	three	time-consuming	stages	are	performed	in

sequence	in	the	non-overlapping	mode,	and	the	sequential	timelines	for	three	pipeline	stages	are	illustrated	in	Fig.	16.	Thus,	data	transfers	in	Fig.	16	are	blocking	transfers	and	the	host	function	running	on	a	CPU	can	only	launch	GPU	kernels	after	completion	of	the

corresponding	data	transfers,	so	that	both	the	PCI-E	buses	and	GPU	waste	a	lot	of	time	in	idle	state	during	the	entire	workflow,	which	sharply	decreases	the	processing	performance	of	CUDA	programs.	To	reduce	these	idle	time	slices,	GPCF-LWT	overlaps	the	three

major	time-consuming	stages	by	using	CUDA	streams	in	the	pipelines.	In	accordance	to	the	hardware	development	that	both	GPU	and	PCI-E	support	bidirectional	data	transfers,	each	pipeline	in	GPCF-LWT	handles	a	repeated	process	of	transferring	a	small	data	chunk

to	a	GPU	memory	first	and	then	launching	LWT	kernels	to	process	this	data	chunk	until	the	whole	dataset	is	processed.	Fig.	17	shows	the	timelines	of	two	data	transfer	stages	and	LWT	kernel	execution	stage	with	the	overlapping	model,	in	which	LWT	kernels	can	be

performed	during	stages	of	data	transfers	(i.e.,	the	data	transfers	are	hided),	such	that	a	GPU	can	always	stay	in	the	busy	state	during	the	entire	data	processing	workflow	to	gain	higher	performance	than	the	non-overlapping	model.	This	strategy	can	be	extended	to

hide	data	transfer	delays	in	multi-GPU	systems	gracefully.	The	CUDA	API	cudaMemcpyAsync()	had	been	applied	in	this	study	to	asynchronously	transfer	data	from	a	CPU	host	memory	to	a	GPU	global	memory	in	order	to	realize	the	overlapping	between	data	transfers

and	kernel	executions.	The	pseudocodes	of	the	devised	overlapping	strategy	are	listed	in	Algorithm	1,	and	the	LBB	based	2D	LWT	kernel	is	listed	in	Algorithm	2.	Moreover,	this	aggregated	strategy	still	applies	on	the	systems	using	NVLink	technology	with	two	features:

(1)	both	H2D	and	D2H	data	transfers	are	efficient,	so	stage	1	and	3	consume	far	less	time;	(2)	these	two	stages	can	transfer	a	relative	large	data	chunk	each	time,	such	that	stage	2	maintains	high	concurrency.	With	these	new	features,	the	GPCF-LWT	can	achieve	better

performance	without	extra	effort.

Fig.	11	The	hierarchy	structure	of	CUDA	threads.
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Fig.	12	Processing	times	of	2D	LWT	on	GPCF-LWT	for	different	numbers	of	threads	in	a	block.
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Fig.	13	The	hierarchical	memory	hierarchy	usage	of	GPCF-LWT.
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Fig.	14	The	bandwidth	of	pinned	and	page-able	memory	mode	respectively.
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Fig.	15	The	performance	comparison	of	the	two	solutions.
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Algorithm	1	Overlapping	of	three	stages—two	data	transfers	and	kernel	executions.

alt-text:	Algorithm	1

Inputs:	a	2D	raw	data	Data[][],	and	row	number	rows,	column	number	cols.

1	stream	<-	cudaStreamCreate(&stream[i]) 	//	create	n	streams

2	a_h = &Data[0][0]            	//	get	the	start	address	of	Data[][]

3	size=	N	*	cols	/	nStreams         	//	calculate	the	data	size	for	each	stream

4	for	i = 0	to	nStreams	−1	do

5  offset = i	*	N	/	nStreams        	//	calculate	the	address	offset	for	a	stream	pipeline

6  cudaMemcpyAsync(a_d+offset,	a_h+offset,	size,	H2D,	stream[i])	//	transfer	data	to	a	GPU	in	the	ith	stream

7  LBB_LWT	<<<…,	stream[i]>>>(a_d+offset) 	//	launch	a	wavelet	transform	kernel	in	the	ith	stream

8  cudaMemcpyAsync(a_d+offset,	a_h+offset,	size,	D2H,	stream[i])	//	transfer	data	to	a	CPU	in	the	ith	stream

Algorithm	2	LBB	based	2D	LWT	kernel.

alt-text:	Algorithm	2

Inputs:	a	2D	raw	data	Data[][],	and	row	number	rows,	column	number	cols.

Outputs:	cA,	cH,	cV,	and	cD.

1  //	for	each	slide	window

2   for(row=0;	row	<	height;	row+=SLIDE_HEIGHT)	do

3     __shared__	float	sData	<-	load	raw	data	from	a	GPU	global	memory	space	to	a	GPU	shared	memory	space

4     //	each	group	of	row	threads	performs	horizontal	1D	LWT	in	parallel	to	process	a	subset	and	caches

Fig.	16	The	timelines	of	the	data	transfers	and	LWT	kernel	executions	in	the	non-overlapping	model.
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Fig.	17	The	timelines	for	overlapping	of	three	pipelines.
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     	//	the	temporary	results

5     even,	odd	<-	split(sData);

6     Preprocessing(even,	odd);

7     __syncthreads();  	//	synchronization	operations

8     predict(even,	odd);

9     update(even,	odd);

10    __syncthreads();

11    //	each	group	of	column	threads	performs	vertical	1D	LWT	in	parallel	to	process	the	temporary	results

12    even,	odd	<-	split(sData);

13    Preprocessing(even,	odd);

14    __syncthreads();

15    predict(even,	odd);

16    update(even,	odd);

17    __syncthreads();

18    save(even,	odd,	output);  	//	save	output	results	back	to	a	GPU	global	memory	space

To	test	and	evaluate	the	validity	and	practicality	of	this	pipeline	overlapping	strategy	for	LWT	computations,	this	study	compared	the	performance	between	the	overlapping	and	non-overlapping	implementations	by	using	a

single	GTX	1080	GPU	card	and	performing	4	-level	2D	LWT	with	D4	wavelet	(data	size	4096 × 4096).	This	experiment	recorded	the	processing	time	of	each	step,	i.e.,	H2D,	data	processing	on	a	GPU	card	(CUDA	kernel	executions),	and

D2H.	Based	on	the	experimental	results	listed	in	Table	1Table	3,	it	can	be	seen	that	the	overall	computational	time	of	non-overlapping	implementation	is	the	sum	of	time	consumptions	of	these	three	steps	since	these	steps	are	performed

in	a	sequential	order.	By	contrast,	the	overall	computational	times	of	overlapping	implementations	are	steadily	less	than	the	sum	of	these	three	steps	as	they	are	performed	concurrently.	Thus,	the	overlapping	optimization	strategy	can

reduce	the	overall	computational	time	(Table	1).

Table	1	The	performance	comparison	between	overlapping	and	non-overlapping	implementation	(ms).
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Program	routines Strategies H2D Kernel	executions D2H Overall	processing	time

FLWT Non-overlapping 35 193 32 260

Overlapping 33 197 32 213

ILWT No-overlapping 33 215 38 286

Overlapping 34 206 35 225

5	The	multi-GPU	solution	of	GPCF-LWT
The	powerful	computing	capability	of	single	GPU	satisfies	the	computational	demands	of	many	applications.	However,	the	limited	memory	spaces	and	CUDA	cores	of	a	single	GPU	card	make	it	impossible	to	process	a	complete

dataset	 in	 online	 surface	 texture	measurement	 applications.	 Thus,	 dealing	with	 large-scale	 dataset	 requires	 the	multi-GPU	 processing	mode.	 At	 present,	 there	 are	 two	 categories	 of	 commonly	 used	multi-GPU	 systems,	 i.e.,	 the

standalone	computers	(a	single	CPU	node	with	multiple	GPU	cards)	and	the	cluster	distributed	systems	(multiple	CPU	nodes	and	each	accompanied	by	one	or	more	GPU	cards).	Both	can	accelerate	data	processing	greatly	and	gain

better	computational	performance.	However,	limited	to	the	low-speed	PCI-E	buses	and	network	connections,	big	data	transferring	between	a	CPU	host	memory	space	and	a	GPU	global	memory	space	becomes	the	key	bottleneck	of

multi-GPU	 systems.	 Based	 on	 this	 consideration,	 reducing	 or	 hiding	 data	 transfer	 delays	 are	 the	 most	 important	 optimization	 strategy	 to	 obtain	 high	 performance.	 More	 importantly,	 since	 the	 major	 consumption	 of	 LWT	 is



multiplication,	addition	and	subtraction,	and	it	shares	only	nearby	data	(i.e.	GPCF-LWT	does	not	need	to	share	datasets	across	the	network),	so	communication	requirements	among	distributed	computer	nodes	in	LWT	applications	are

very	low.	From	this	point	of	view,	a	standalone	heterogeneous	multi-GPU	system	has	been	adopted	for	GPCF-LWT.	This	study	tries	to	reduce	idle	time	slices	of	PCI-E	bus	and	GPU	kernel	executions,	and	improves	the	computational	load

balancing	over	the	multiple	GPU	cards	for	the	multi-GPU	GPCF-LWT	implementation.	To	reduce	idle	time	slices,	this	study	made	two	improvements	on	GPCF-LWT:	(1)	maximizing	the	utilization	rate	of	the	PCI-E	bus	bandwidth;	(2)

hiding	data	transfer	delays	through	making	every	GPU	card	always	in	the	busy	state	during	the	whole	data	processing	workflow.	For	the	first	point,	GPCF-LWT	applies	bidirectional	data	transfers	on	the	bandwidth	of	a	PCI-E	bus	that

can	support	both	H2D	and	D2H	at	the	same	time.	In	terms	of	the	second	point,	the	pipeline	overlapping	strategy	presented	in	Section	4.4	has	been	applied	on	every	GPU	card	in	the	heterogeneous	multi-GPU	system.	Furthermore,	in

GPCF-LWT,	data	transfers	between	a	CPU	and	a	GPU	just	need	to	read	once,	and	it	does	not	require	any	intermediate	computational	results	transferring	between	a	CPU	and	a	GPU	or	among	different	GPUs.	Thus,	this	multi-GPU	based

GPCF-LWT	does	not	require	any	extra	communication,	and	it	has	not	any	data	transfer	delay	during	the	whole	computational	procedure.	Nevertheless,	the	traditional	dataset	division	approaches	are	likely	to	cause	load	unbalancing

problem	and	low	rate	of	GPU	hardware	utilization.

5.1	Load	unbalancing	problem
Basically,	due	to	the	separable	property	of	2D	LWT,	a	simple	load	balancing	model	based	on	the	pure	dataset	division	method	can	be	derived	[23].	This	solution	is	simple	and	useful,	but	it	may	lead	to	load	unbalancing	problem

when	a	multi-GPU	system	contains	heterogeneous	GPU	cards	with	unequal	computing	capability.	As	a	result,	the	overall	performance	of	a	multi-GPU	system	depends	on	the	GPU	node	that	has	the	lowest	performance.	Moreover,	2D

LWT	applications	are	data-oriented	computations,	i.e.,	huge	data	processing	but	limited	CUDA	kernels.	Thus,	this	study	devised	a	data-oriented	dynamic	load	balancing	(DLB)	model	for	rapid	and	dynamic	dataset	division	and	allocation

on	heterogeneous	GPU	nodes	by	using	a	fuzzy	neural	network	(FNN)	framework	[38].	The	data-oriented	DLB	model	can	minimize	the	overall	processing	time	by	dynamically	adjusting	the	number	of	data	subsets	in	a	group	for	each

GPU	node	according	to	runtime	feedbacks.	Here,	two	important	improvements	on	FNN	of	the	previous	work	of	authors	([398])	to	enhance	the	effectiveness	of	DLB	model	are	presented.

5.2	Improved	FNN	model
The	overall	framework	of	the	FNN	based	DLB	model	devised	in	the	previous	work	is	illustrated	in	Fig.	18	[39][38].	In	this	model,	five	state	feedback	parameters	(fuzzy	sets),	i.e.,	floating-point	operation	performance	(F),	global

memory	size	(M),	parallel	ability	(P),	the	occupancy	rate	of	computational	resources	of	a	GPU	(UF)	and	the	occupancy	rate	of	the	global	memory	space	of	a	GPU	(UM),	relating	closely	to	the	overall	computational	performance	are

defined.	The	predictor	 in	FNN	is	devised	to	predict	 the	relative	computational	performanceability	under	different	workload	scenarios,	and	the	scheduler	can	reorganize	 the	data	groups	 for	each	GPU	card	respectively	according	to

dynamic	feedbacks	of	the	predictor.	In	the	beginning,	a	raw	dataset	is	divided	into	several	equal-sized	data	chunks	(the	size	is	relatively	small,	and	the	number	of	data	chunks	should	be	far	more	than	the	number	of	GPU	nodes)	and

these	chunks	are	organized	into	n	groups	(n	is	equal	to	the	number	of	GPU	cards	in	a	multi-GPU	system)	by	using	the	scheduler.	In	the	runtime,	the	number	of	data	chunks	in	a	group	assigned	to	each	GPU	card	is	different,	and	it	is

determined	dynamically	by	the	real-time	feedbacks	(i.e.,	five	state	feedback	parameters)	of	a	single	GPU	card.	Thus,	the	DLB	model	minimizes	the	overall	processing	time	by	dynamically	adjusting	the	number	of	data	chunks	in	a	group

for	each	GPU	at	runtime.

Based	on	the	earlier	outputs,	this	study	further	explored	two	improvements	on	FNN	to	increase	the	efficiency	and	predication	accuracy	of	the	devised	DLB	model:

1) This	study	has	constructed	other	three	state	feedback	parameters	for	improving	the	accuracy	of	the	nth	relative	computational	ability	CPni	predication	for	ith	GPU	node,	i.e.,	memory	speed	(MS),	boost	clock	(BC)	and	the	last	relative	computational	ability	(CPn-1i	or

LCPni).	Both	memory	speed	and	boost	clock	are	core	hardware	parameters	affecting	the	computing	capability	of	CUDA	GPU	cards.	For	example,	the	memory	speed	of	GeForce	GTX	1080	GPU	card	is	10 Gbps	(GBs	per	second)	and	the	boost	clock	is	1607 MHz	(Mega

Fig.	18	The	overall	framework	of	the	FNN	based	DLB	model.
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Hertz),	and	the	GeForce	750	Ti	GPU	card	is	1.02 Gbps	and	1085 MHz,	respectively.	There	is	a	strong	correlation	between	CPn-1i	and	CPni,	i.e.,	when	the	current	CPn-1i	is	very	high,	more	subsets	will	be	organized	in	the	data	group	of	CPUi,	and	it	will	keep	CPUi	busy	with

high	UM	and	UF	values,	which	in	turn	leads	to	the	low	CPni.	Thus,	the	balance	between	CPn-1i	and	CPni	needs	to	be	considered	in	predications.	Currently,	the	improved	DLB	model	has	eight	feedback	parameters	and	they	are	all	fuzzified	as	“high”	and	“low”	fuzzy

subsets,	these	three	kinds	of	fuzzy	sets	and	subsets	are	listed	in	Table	2.

2) This	study	improves	the	fuzzy	subset	descriptions	by	providing	a	comprehensive	membership	function	adaption	mechanism.	In	the	former	DLB	model,	all	fuzzy	sets	are	fuzzified	by	one	membership	function–the	sigmoid.	Here,	the	static	parameters	(i.e.,	F,	M,	P,	MS	and

BC)	still	use	sigmoid	membership	function,	whereas	the	dynamic	feedback	parameters	(i.e.,	UF,	UM,	CP	and	LCP)	adopt	an	innovative	membership	function.	This	membership	function	has	been	explored	based	on	the	softplus	that	has	been	processed	by	shift	and	scalar

operations	to	satisfy	the	fundamental	property	of	a	fuzzy	membership	function.	The	softplus	became	an	mainstream	activation	function	in	deep	leaning	networks,	and	it	can	be	formulated	as	Eq.	(23)Eq.	(21)	and	its	curve	is	illustrated	in	Fig.	19	[44].	It	grows	very	slow

when	x	is	relatively	small,	and	it	will	be	rapidly	increased	after	x	greater	than	a	threshold	value	(e.g.,	1	in	Fig.	19).	This	phenomenon	can	model	the	change	of	computational	performance	of	a	GPU	node	as	when	UF	and	UM	are	relatively	low,	the	computing	capability	is

almost	unchanged,	and	it	also	will	drop	sharply	when	UF	and	UM	are	larger	than	the	threshold	values.	However,	the	softplus	cannot	be	used	as	a	membership	function	directly	due	to	Eq.	(23)Eq.	(21)	fails	to	satisfy	f(x) ∈ [0,	1]	and	x ∈ [0,1].

Table	2	Three	kinds	of	fuzzy	sets	and	subsets.

alt-text:	Table	2

Sets Descriptions Fuzzy	subsets Descriptions	of	fuzzy	subsets

MS Memory	speed
MSL Low

MSH High

BC Boost	clock
BCL Low

BCH High

LCP The	last	relative	computational	ability
LCPL Low

LCPH High

Table	3	The	specification	of	a	heterogeneous	multi-GPU	system.

alt-text:	Table	3

Property Description

CPU Intel	Core	i7-4790	3.6	GHZ

Memory 16G

GPU GPU1:	NVIDIA	GeForce	GTX	750	Ti,	2 G,	5 × SM,	128	SP/SM,	1.02 Gbps	memory	speed,	1085 MHz	boost	clock

3 × GPU2:	NVIDIA	GeForce	GTX	1080,	8 G,	20 × SM,	128	SP/SM,	10 Gbps	memory	speed,	1607 MHz	boost	clock

OS Windows	10	64	bit

CUDA Version	8.0

(21)



To	remedy	this	defect,	this	study	performs	shift	and	scalar	operations	on	the	softplus	function,	so	the	softplus	can	be	extended	as	follows:

where	a	is	a	scalar	factor	and	b	is	a	shift	factor,	and	Eq.	(24)	Eq.	(22)	must	satisfy:

By	adding	a	normalization	factor,	Eq.	(24)	Eq.	(22)	can	be	redefined	as	Eq.	(26)Eq.	(24),	and	a	and	b	can	take	the	value	of	5	and	−3,	respectively.	Fig.	20	shows	the	curve	of	the	improved	softplus.

Based	on	the	three	new	state	feedback	parameters	and	the	improved	softplus,	this	study	constructed	a	more	effective	DLB	model	that	integrates	the	fuzzy	theory,	artificial	neural	networks	(ANN)	and	the	back	propagation

algorithm.	The	comparison	experiment	between	the	improve	DLB	model	and	the	conventional	DLB	model	in	[39]	[38]	is	presented	in	Section	6.2	(the	fourth	fifth	experiment).

Fig.	19	The	curve	of	softplus	function.
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Fig.	20	The	curve	of	the	improved	softplus	function.
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6	Test	and	performance	evaluation
6.1	Hardware	and	testbed

Table	3	specifies	a	heterogeneous	multi-GPU	system	constructed	for	testing	and	evaluating	GPCF-LWT	with	experiments	and	the	applicable	case	study,	and	it	contains	four	different	types	of	GPU	cards	‒	—a	middle-low	range

GPU	(NVIDIA	GeForce	GTX	750	Ti)	and	three	high-end	GPUs	(NVIDIA	GeForce	GTX	1080).	GTX	750	Ti	and	GTX	1080	contain	640	and	2560	CUDA	cores,	respectively.

6.2	Benchmarking	experiments
This	section	tests	and	evaluates	the	computational	performance	and	practicability	of	GPCF-LWT	under	both	a	heterogeneous	multi-GPU	setting	and	a	high-end	single	GPU	setting	in	five	encompassing	experiments:

1) The	first	experiment	compares	the	computational	performances	of	the	LBB,	RC	and	RC&LB	[4]	based	on	the	classic	lifting	scheme	by	using	the	single	GPU	setting	(a	GTX	1080	GPU	card).	The	LBB,	RC	and	RC&LB	have	been	tested	on	the	4-level	CDF	(9,	7)	forward

and	inverse	2D	LWT.	The	data	size	ranges	from	1024	1024	×	×	1024	to	5120	5120	×	×	5120.	Fig.	21	shows	that	with	 increasing	data	size,	 the	performance	from	RC	is	plunging	quickly	due	to	 intrinsic	synchronization	operations.	RC&LB	shows	high	computational

performance	when	the	data	sizes	are	relatively	small	(e.g.,	equal	to	or	smaller	than	2048	2048	×	×	2048).	The	processing	time	will	increase	drastically	once	the	data	size	goes	up	for	extra	synchronization	calls.	In	contrast,	the	devised	LBB	model	can	maintain	high-

performance	 for	 larger	 data	 range.	 This	 experimental	 demonstrated	 that	 the	 LBB	model	 in	 the	 GPCF-LWT	 framework	 is	 superior	 and	 gains	 up	 to	 14	 times	 speedup	 in	 comparison	with	 RC,	 and	 up	 to	 7	 times	when	 compared	with	 RC&LB	 under	 a	 single	 GPU

configuration.

2) The	second	experiment	tests	the	effectiveness	of	the	improved	lifting	scheme	by	using	the	single	GPU	setting.	It	also	performs	the	4-level	CDF	(9,	7)	forward	and	inverse	2D	LWT.	In	Fig.	22,	the	improved	lifting	scheme	gains	higher	computational	performance	since	it

reduces	half	of	the	required	synchronization	in	lifting	step	(step	3)	(see	Section	4.2).	It	substantially	increases	the	parallelizability	of	LWT	computations.

3) To	evaluate	the	generalization	feature	of	CPCF-LWT,	the	third	experiment	tests	the	computational	performance	of	six	types	of	wavelets,	namely	Haar,	D4,	D8,	D20,	CDF	(7,	5)	and	CDF	(9,	7),	using	the	classic	lifting	scheme	with	RC;,	the	classic	lifting	scheme	with

RC&LB;,	and	the	improved	lifting	scheme	with	LBB.	A	single	GTX	1080	GPU	card	is	used	for	athe	4-level	2D	LWT	of	the	with	data	size	4096 × 4096.	In	this	experiment,	different	wavelet	transforms	have	been	performed	in	a	generic	manner	with	different	U,	P	and	K	for

different	wavelets.	The	experimental	results	highlight	that	the	computational	performance	of	CPCF-LWT	is	significantly	higher	than	the	corresponding	RC	and	RC&LB	based	implementations,	see	Fig.	23.

4) The	fourth	experiment	evaluates	the	effectiveness	of	the	three	optimization	strategies	equipment	in	GPCF-LWT,	again	on	a	single	GTX	1080	GPU	card.	Since	each	strategy	has	been	tested	separately	in	Section	4.4,	this	experiment	focuses	on	the	comparison	between

the	LBB	with	the	hybrid	strategy-driven	(the	combination	of	three	optimizations)	and	LBB	without	any	optimization.	Fig.	24	shows	that	the	hybrid	approach	gain	noticeable	improvements	when	comparing	to	the	pure	LBB.

5) The	fifth	experiment	further	examined	the	computational	performances	of	GPCF-LWT	when	applied	on	two	single	GPU	settings	and	three	multi-GPU	settings	by	using	the	heterogeneous	GPU	system	listed	in	Table	3.	This	experiment	has	adapted	a	CDF	(9,	7)	wavelet	to

perform	4-level	2D	forward	and	inverse	LWT	of	large	data	sizes	ranging	from	10,240	240	×	×	10,240	to	16,384	384	×	×	16,384.	Fig.	25	lists	the	processing	time	of	the	five	test	settings,	i.e.,	the	single	GTX	750	Ti	GPU	setting	(setting1),	the	single	GTX	1080	GPU	setting

(setting2),	 pure	 dataset	 division	 based	multi-GPU	 setting	 (setting3),	 the	 original	 DLB	 based	multi-GPU	 setting	 (setting4)	 [38]	 and	 the	 improved	 DLB	 based	multi-GPU	 setting	 (setting5).	 It	 can	 be	 seen	 from	 Fig.	 25	 that	 setting1	 implementation	 has	 the	 lowest

computational	performance,	followed	by	setting2	since	the	GTX	1080	GPU	contains	more	CUDA	cores	(2560),	 larger	global	memory	space	(8GB)	and	higher	data	transfer	speed	(10 Gbps)	than	the	GTX	750	Ti	GPU	(640,	2GB,	5.4 Gbps,	 respectively).	However,	 the

computational	performance	improvement	of	setting2	is	very	limited,	which	proves	that	it	will	not	lead	to	the	linear	computational	performance	improvement	for	large-scale	computational	applications	accompanied	by	extremely	large	input	volume	and	highly	repetitive

simple	operational	procedures	or	iterations,	specifically	for	2D	LWT	by	simply	changing	a	better	GPU	card.	The	setting3	implementations	can	gain	a	slightly	higher	computational	performance	improvement	than	the	two	single	GPU	implementations	for	about	2	and	3

times.	In	contrast,	 the	DLB-driven	GPCF-LWT	multi-GPU	implementations	(setting4	and	setting5)	achieve	significant	computational	performance	enhancement	since	 the	FNN	based	DLB	can	allocate	data	 tasks	dynamically	during	runtime	according	to	 the	relative

computational	performanceability	across	all	GPU	nodes.	Moreover,	the	improved	DLB	(setting5)	has	gained	better	performance	than	the	original	version	(setting4)	for	all	data	sizes	due	to	the	softplus	based	membership	function	that	is	more	suitable	for	adapting	the

dynamic	change	of	computational	performance	of	heteronomous	GPU	nodes.	The	peak	performance	gain	(speedup	on	data	size	of	16,384 × 16,384)	of	the	setting5	has	reached	approximately	10	times	more	than	setting3;	and	when	compared	with	the	two	single	GPU

implementations,	the	speedup	from	setting5	has	reached	15	and	20	times	than	setting1	and	setting2	respectively.



Fig.	21	The	performance	comparison	among	LBB,	RC	and	RC&LB	models.
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Fig.	22	The	performance	comparison	between	the	classic	and	improved	lifting	scheme.
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Fig.	23	The	generalization	feature	evaluation	of	CPCF-LWT.
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6.3	A	case	study	on	online	engineering	surface	filtration
This	section	carries	a	case	study	on	online	engineering	surface	filtration	to	test	the	usability	and	efficiency	of	the	devised	multi-GPU	GPCF-LWT	in	comparison	with	other	state-of-the-art	multi-GPU	approaches.	In	the	field	of

areal	surface	texture	characterization	extractions,	geometrical	characteristic	signals	relating	closely	with	 functional	requirements	can	be	extracted	precisely	 from	wavelet	coefficients	by	using	different	 transmission	bands.	The	2D

forward	LWT	computations	should	be	performed	on	raw	2D	surface	measured	datasets	to	obtain	instances	of	detail	coefficients	Di	at	all	levels	and	the	approximation	coefficient	cA	instances	from	the	last	level,	and	the	instances	of	cAi	of

each	level	can	be	obtained	during	performing	2D	inverse	LWT.	Based	on	instances	of	Di	and	cAi,	the	geometrical	characteristics	(i.e.,	roughness,	waviness	and	form)	of	a	surface	texture	can	be	obtained	by	calculating	the	following

inverse	LWT	defined	in	Equation	Eq.	(27)Eq.	(25)	[10,40].

In	order	to	extract	the	roughness	η(x,	y)	and	waviness	η′(x,	y)	from	a	surface	texture	profile,	the	cAi	must	be	setup	to	zero.	Similarly,	the	Di	must	be	setup	to	zero	for	extracting	the	form	characteristic.

Fig.	24	The	effectiveness	experiment	of	the	three	optimization	strategies	in	GPCF-LWT.
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Fig.	25	The	comparison	of	processing	times	of	setting1,	setting2,	setting3,	setting4	and	setting5	implementations.
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This	study	selected	two	kinds	of	raw	engineering	surfaces	(surfaces	on	ceramic	femoral	heads	and	milled	metallic	workpieces)	to	test	and	evaluate	the	GPCF-LWT.	The	GPCF-LWT	integrates	the	devised	LBB,	improved	lifting

scheme,	the	three	implementation	optimizations,	and	the	improved	data	-oriented	DLB.	This	analysis	evaluates	the	SURFSTAND	that	is	a	surface	characterization	system	employing	modern	CPU	core	[10],	and	two	other	multi-GPU

implementations	of	RC&LB	and	the	method	proposed	by	Ikuzawa	[46][45].	It	should	be	noted	that	the	pure	dataset	division	method	was	applied	for	the	two	multi-GPU	implementations.	The	heterogeneous	multi-GPU	listed	in	Table	3	is

used	for	all	three	multi-GPU	implementations.

Figs.	26a	and	27a	show	a	raw	measured	dataset	from	the	functional	surface	of	a	ceramic	femoral	head	and	a	milled	metallic	workpiece	respectively	with	the	sampling	size	4096	4096	×	×	4096.	In	Fig.	26a,	the	measured	surface

texture	has	two	different	types	of	scratches	produced	by	the	grinding	manufacturing	process,	and	one	of	them	is	regular	and	shallow	scratches	while	the	other	is	random	deeper	scratch.	The	six-level	D4	wavelet	has	been	used	in	this

case	to	perform	both	forward	and	inverse	2D	LWT.	The	Fig.	26b-d	demonstrate	the	roughness,	waviness	and	form	characteristics	extracted	from	a	femoral	head	surface	by	using	the	inverse	LWT	defined	in	Equation	Eq.	(27)Eq.	(25).	In	the

case	of	the	milled	metallic	surface	(see	Fig.	27a),	the	six-level	CDF	(9,	7)	wavelet	has	been	used	to	perform	2D	LWT,	and	Fig.	27b-–d	demonstrate	the	roughness,	waviness,	and	form	characteristics	extracted	from	a	milled	metallic

surface	by	using	the	inverse	LWT	defined	in	Equation	Eq.	(27)Eq.	(25).

It	 is	worth	mentioning	 that	CUDA	supports	 the	single	 float	 (32-bit,	abbreviated	as	FP32)	and	 the	half	 float	 (16-bit,	FP16)	precisions	 [19,45][19,46].	This	experiment	 tested	both	of	 these	 two	precisions.	From	this	 test,	 it	 is

discovered	that	float	precision	settings	do	not	affect	the	computational	performance	of	2D	LWT	on	CPU	due	to	the	Intel	Core	i7-4790	CPU	uses	64-bit	instruction.	Both	FP16	and	FP32	operations	can	be	executed	on	the	64-bit	mode	in

negligible	difference.	In	contrast,	FP16	based	multi-GPU	implementations	show	higher	computational	performance	than	the	FP32	implementations.	However,	the	lower	precision	of	FP16	fails	to	fulfil	the	high	precision	requirement	of

micro-	 and	nano-surface	 texture	metrology,	 such	 that	 this	 case	 study	only	applies	 the	FP32	 for	evaluation.	The	 results	 show	 that	 the	multi-GPU	GPCF-LWT	and	pure	CPU	 (Intel	Core	 i7-4790	3.6GHZ)	 implementations	have	 same

filtration	effects	on	both	precision	and	accuracy	aspects.	Table	4	shows	that	multi-GPU	implementations	can	gain	over	20	times	speedup	over	CPU	implementations.

Fig.	26	The	functional	surface	texture	of	a	ceramic	femoral	head.
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Fig.	27	The	functional	surface	texture	of	a	milled	metallic	workpiece.
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Table	4	The	performance	comparisons	between	a	CPU	and	the	multi-GPU	implementation	(ms).

alt-text:	Table	4

Datasets LWT ILWT

CPU GPCF-LWT CPU GPCF-LWT

Ceramic	femoral	head	(4096 × 4096) 10,165 415 12,590 450

Ceramic	femoral	head	(12,288 × 12,288) 28,569 756 34,681 832

Milled	metallic	workpiece	(4096 × 4096) 12,850 510 12,685 511

Milled	metallic	workpiece	(12,288 × 12,288) 30,256 748 35,647 786

Fig.	28	 shows	 the	performance	comparison	among	GPCF-LWT,	RC&LB	and	 Ikuzawa's	solution	on	 the	heterogeneous	multi-GPU	system	detailed	 in	Table	3.	 In	 this	 case,	 the	 testing	dataset	has	been	expanded	 to	 the	 size	of

12,288	288	×	×	12,288	to	evaluate	whether	GPCF-LWT	can	deal	with	large-scale	datasets	in	the	online	manner.	The	experimental	results	show	that	RC&LB	has	the	minimum	computational	performance	due	to	its	heavy	synchronization

calls.	Ikuzawa's	solution	gains	better	performance	due	to	its	higher	efficiency	on	memory	usage.	Though	both	still	suffer	from	the	heavy	synchronization,	pipeline	cluttering,	and	data	overload	problems.	In	contrast,	the	GPCF-LWT	with

advanced	optimizations	gains	up	to	12	times	on	processing	speed	over	other	two	multi-GPU	approaches.

In	summary,	multi-GPU	based	GPCF-LWT	has	gained	significant	improvement	on	the	computational	performance	for	2D	LWT.	It	can	process	a	very	large	dataset	(e.g.,	12,288	288	×	×	12,288)	in	less	than	one	second,	so	that

performance	requirements	of	online	(or	near	real-time)	and	large-scale	data	intensive	surface	texture	filtration	applications	can	be	satisfied	gracefully.

Fig.	28	The	performance	comparisons	of	three	multi-GPU	implementations	(ms).
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7	Conclusions	and	future	work
To	fulfill	the	online	and	big	data	requirements	in	micro-	and	nano-surface	metrology,	the	parallel	computational	power	of	modern	GPUs	is	explored.	This	research	devised	a	generic	parallel	computational	framework	for	lifting

wavelet	transform	(GPCF-LWT)	acceleration	based	on	a	heterogeneous	multi-GPU	system.	One	of	the	outcomes	of	this	innovative	infrastructure	is	a	new	parallel	computational	model	named	LBB	to	alleviate	the	vital	problem	of	shared

memory	 shortage	 in	 a	 single	 GPU	 card	while	 ensuring	 the	 generalization	 of	 LWT	 in	 the	 context	 of	 CUDA	memory	 hierarchy.	 To	 increase	 the	 parallelizability	 of	 LWT,	 an	 improved	 lifting	 scheme	 has	 also	 been	 developed.	 Three

optimization	strategies	on	the	single	GPU	configuration	are	validated	and	then	integrated.	To	further	improve	the	computational	performance	of	the	GPCF-LWT,	it	has	been	expanded	to	compute	on	a	heterogeneous	multi-GPU	system

with	a	Fuzzy	Theory-based	load	balancing	model.	This	study	further	explored	two	improvements	on	the	previous	devised	FNN	DLB	model	to	increase	the	efficiency	and	predication	accuracy.	Experiments	show	that	the	proposed	GPCF-

LWT	can	achieve	superior	and	substantial	computational	performance	gain	when	compared	with	other	state-of-the-art	techniques.	Over	20	times	speedup	has	been	monitored	over	the	pure	CPU	solutions,	and	up	to	12	times	over	other

benchmarking	multi-GPU	solutions	with	large-scale	surface	measurement	datasets.	The	innovative	framework	and	its	corresponding	techniques	have	addressed	the	key	challenges	from	2D	LWT	applications	that	are	vital	for	big	surface

dataset	processing.

One	avenue	opened	up	during	 the	 study	 for	 future	exploration	 is	 to	 introduce	 the	deep	 learning	 idealism	across	 the	GPU	and	CPU	boundary.	Especially	when	 facing	cell-CPU	or	 cluster	CPUs,	 a	hybrid	and	efficient	data

distribution	scheme,	as	well	as	an	online	surface	texture	analysis	platform	with	smart	recommendation	functions	for	filter	selection	will	be	of	great	value	for	practitioners.
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