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Hardware-Based Cyber Threats: Attack Vectors and 
Defence Techniques  

Abstract: There are certain vulnerabilities associated with computing hardware 

that attackers can exploit to launch destructive attacks which often go undetected 

by the existing hardware and software countermeasures. Side Chanel Attacks 

(SCAs) and Rowhammer Attacks (RHAs), the consequences of hardware 

vulnerabilities, pose significant security and privacy threats to self-contained 

computing components and their end-users respectively. Such attacks 

compromise the security of computational environments, even those with 

advanced protection mechanisms such as virtualisation, sandboxes or robust 

encryptions. In light of these security threats against modern computing hardware, 

we perform an analysis overview of the modi operandi of SCAs and RHAs in 

hardware implementation and techniques that can be used to extract sensitive data 

such as secret keys. We then propose various countermeasures to safeguard 

against these attacks. 

Keywords: side channels; microarchitectural attacks; cyber threats; hardware 

attacks; embedded systems; digital investigations; countermeasures;  



1. Introduction
New technologies often claim to be secure by applying sandboxing techniques

and performing processes in isolated software environments, i.e. Virtual Machines (VMs) 

(Wu et al., 2012; Aciimez, 2007). However, the implementation of isolated environments 

often does not adequately consider hardware emissions. The malicious use of hardware 

resources as side and covert channels can have a detrimental impact on the privacy of the 

end-users (victims), and modern processor architectures lack a thorough security analysis. 

Security vulnerabilities inherent in processor components are often due to their design and 

implementation (Aciimez, 2007; Aciimez and Koc, 2009; Bosman et al., 2016; Fournaris 

et al., 2017). For instance, although hardware manufacturers have been able to conceal the 

internal CPU architecture from programmers to a large extent, the CPU's timing behaviour 

is still highly visible (Ge et al., 2016; Bosman et al., 2016). All Microarchitectural attacks, 

irrespective of their type, can exploit security systems regardless of advanced partitioning 

methods (e.g. memory protection), sandboxing or even virtualisation. Hence, it is vital to 

identify every conceivable Microarchitectural susceptibility in order to comprehend the 

potential of Microarchitectural analysis and design to implement more secure systems. This 

can be achieved by adopting new approaches to develop appropriate software 

countermeasures and making specific hardware changes in future architectures. 

Therefore, in light of the above discussion, our study will focus on three concepts 

in relation to Microarchitectural Attacks (MAs). To this end, we analyse (1) two MA 

variants, namely SCAs and the newly discovered Rowhammer Fault Injection attacks, (2) 

along with existing countermeasures, and (3) propose new mitigation strategies. From this 

analysis, we deduce insight in relation to the current state of knowledge observed in the 

literature, hypothesise means of attacks that have not been previously explored, predict 

possible future modus operandi of attacks, and propose effective future directions for 

defence mechanisms development.  

The remainder of the paper is structured as follows: Section 2 provides a 

background for Microarchitectural analysis. Sections 3 and 4 analyse SCAs and RHAs 

respectively, while Sections 5 and 6 provide an analysis of the existing countermeasures to 

address the stated attacks. In Section 5, we provide our own recommendations on how to 

address such attacks. Finally, in Section 6, we conclude our study and discuss the future 

research direction in this field of study. Two main contributions of this paper are the scope 

of the discussion, since few works of similar scope currently exist, and the provision of an 

agenda for the direction of future research. 

2. Attacks

2.1 Side-Channel Attacks 

SCAs are almost undetectable hardware-targeted attacks that rely on the leakage 

produced by electronic circuits as by-products that render it possible for an adversary 

without access to circuit itself to find out how the circuit operates and what type of data it 

is processing. SCAs can be very detrimental if proper defence mechanisms have not been 

implemented on a targeted machine. They can be carried out to extract sensitive 

information from computing hardware by means of measurement and analysis of physical 

parameters such as execution time and electromagnetic emission. Heat and electromagnetic 

leakage are both feasible sources of information for an adversary. SCAs can also exploit 



   

 

   

   

 

   

      

      
 

    

 

 

   

   

 

   

   

 

   

       
 

Microarchitectural performance of processor implementations, potentially exposing hidden 

hardware states. Through a SCA, the attacker takes advantage of the cache performance of 

a cryptosystem (Chiappetta et al., 2016; Brumley, 2015) by acquiring the execution time 

or power consumption variations created through cache hits and misses (Aciimez, 2007).  

 

A SCA enables an unprivileged process to attack another process running side by 

side on the same processor (Aciimez and Koc, 2009; Neve and Seifert, 2006; Oren et al., 

2015; Percival, 2005; Yarom and Falkner, 2014). This enables the adversary to extract 

sensitive data from the victim through shared CPU caches. This sensitive data is often 

related to both cryptographic processes such as signing or decryption and also other 

applications (Zhang et al., 2016, a). It is emitted via secret-dependent data flows that result 

in cache usage patterns that are visible to an adversary. With knowledge of this, an attacker 

can leverage various methods to manipulate data in the shared cache to infer the victim's 

cache usage patterns. As a result, the adversary will be able to deduce sensitive data that 

prescribes such patterns. Moreover, a SCA can also be carried out by monitoring operation 

such as AES T-table entry (Ashokkumar et al., 2016; Yarom and Falkner, 2014; Irazoqui 

et al., 2014) or modular exponentiation multiplicand accesses (Inci et al., 2016). The 

memory accesses of software cryptosystems use key-dependent table lookups. Exposing 

such memory access patterns through cache statistics and the knowledge of the processed 

message renders it possible to exploit these ciphers (Aciimez, 2007; Bluhm and Gueron, 

2015; Mirvaziri et al., 2009). 

 

In addition, there are certain cache attacks that can be conducted remotely over 

networks (Ma et al., 2014; Hashizume et al., 2013; Seibert et al., 2014). Within a Cloud 

Computing (CC) environment, SCAs can facilitate cryptographic/bulk key recovery 

(Genkin et al., 2017; Inci et al., 2016; Standaert et al., 2009). A Cloud's shared resources 

such as CPU and memory can provide the attackers with side-channels which leak sensitive 

data and facilitate key recovery attacks (Inci et al., 2016; Irazoqui et al., 2015, a; Sanfelix 

et al., 2015; Woodward, 2016). Those users that operate outdated libraries that are 

susceptible to leakage are more vulnerable to mass surveillance (Irazoqui et al., 2015, b). 

The most commonly exploited emission in the shared resource systems derive from the 

cache and the memory (Ge et al., 2016; Inci et al., 2016).  

 

An RSA secret key from a co-located instance can be obtained by conducting a 

Prime+Probe Attack (Apecechea et al., 2014; Schwarz et al., 2017; Zhang et al., 2014). In 

this situation, to accelerate the attack, an adversary with advanced programming skills will 

be able to reverse engineer the cache slice selection algorithm, for instance for Xeon (a 

brand of x86 microprocessors targeted at the non-consumer workstation, server, and 

embedded systems) that is employed in distributed systems such as cloud computing. 

Furthermore, the attacker can also use noise reduction to infer the RSA private key from 

the monitored traces. By processing the noisy data, they will be able to retrieve the RSA 

key employed during decryption as demonstrated by (Agrawal et al., 2007; Apecechea et 

al., 2014; Genkin et al., 2014; Inci et al., 2016; Yarom and Falkner, 2014).  

Based on the existing studies (Aciimez and Koc, 2009; Blomer and Krummel, 

2007; Ge et al., 2016; Kong et al., 2013; Neve and Seifert, 2006; Zhang et al., 2016, b), we 

categorise cryptanalytic SCA into three classifications: trace-driven, time driven and a new 

category, access-driven, in accordance with the type of information that the adversary 

discovers about a victim's cipher. In trace-driven attacks, the attacker monitors the 

sequence of cache hits and misses during a cryptographic cipher execution. By observing 



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

the execution details of the cipher, the adversary will be able to extract important 

information from specific key-dependent memory access results within a cache hit or a 

cache miss (Ashokkumar et al., 2016; Chen et al., 2013; Tiri et al., 2007). This denotes that 

trace-driven attacks enable the adversaries to discover the result of each of the victim's 

memory accesses in relation to cache hits and misses (Aciimez and Koc, 2009; Gallais et 

al., 2010; Page, 2005). They are often carried out in and against hardware because of the 

difficulty of obtaining the trace of cache hits and misses in software (Ge et al., 2016; 

Ashokkumar et al., 2016; Lauradoux, 2005).  

 

In time-driven attacks, adversarial parties will monitor the entire runtime of a 

cryptographic cipher execution. They will then be able to extract important information 

since the runtime relies on the number of key-dependent memory accesses which lead to 

cache misses (Bernstein, 2005; Gullasch et al., 2011; Spreitzer and Plos, 2013, a; Spreitzer 

and Plos, 2013, b). Because the cache performance is only one part of the many aspects 

that impacts the total runtime of a cryptosystem, time-driven attacks necessitate statistical 

analysis employing a large number of samples to deduce important information (Bonneau, 

and Mironov, 2006; Spreitzer and Grard, 2014). Access-driven attacks monitor partial 

information of the addresses that the victim accesses. Similar to time-driven attacks, the 

timings of the cache are examined as a source of information emission. Access-driven 

attacks probe the cache behaviour with greater detail as opposed to assessing the overall 

runtime (Atici et al., 2013; Neve and Seifert, 2006; Zhang et al., 2016, a; Zhang et al., 

2016, b). They are capable of identifying whether or not a cache line has been ejected as 

the main technique to launch an attack. Access-Driven Cache attacks themselves, can be 

classified into three subcategories, including: Evict+Time, Prime+Probe, Flush+Reload 

(Gruss et al., 2017; Osvik et al., 2006; Percival, 2005). Although many SCAs employ one 

of these three methods, there exist other variations to match the specific abilities of 

hardware and software environments (Gruss et al., 2017). 

 

 

2.1 Rowhammer Attacks 
There are certain vulnerabilities associated with computing hardware that 

attackers can exploit to launch destructive attacks which often go undetected by the existing 

software countermeasures against embedded device systems within cloud environments.  

One of the usual characteristics of a computer hardware component can be malfunction or 

some kinds of abnormal behaviour which can result in providing a backdoor access to a 

potential adversary (Fournaris et al., 2017). If a particular row of a Double Data Rate 

(DDR) memory bank is constantly activated (opened) and pre-charged (closed) within a 

DRAM refresh interval, one or more bit flips take place in physically-adjacent DRAM rows 

to an incorrect value. Such disturbance is known as Rowhammer (Kim et al., 2014). 

Google’s Project Zero in discovered Rowhammer in 2015 establishing that that careful 

RAM bit-flipping in page table entries could allow an attacker to pwn Linux systems 

(Chirgwin, 2017; Seaborn and Dullien, 2015). To carry out a successful Rowhammer 

attack, the attacker will need to adopt four steps, including: (1) identifying the specific 

memory architecture characteristics of the targeted device (Fournaris et al., 2017), (2) 

activating rows in each bank in a swift manner to trigger the Rowhammer susceptibility, 

(3) accessing the aggressor physical address from userland (Seaborn and Dullien, 2015), 

and (4) taking advantage of Rowhammer vulnerability (Bit Flips) (Kim et al., 2014).  

  

Advanced attackers (those with programming skills) can take advantage of 

Rowhammer to launch their attacks against the Dynamic Random-Access Memory 



   

 

   

   

 

   

      

      
 

    

 

 

   

   

 

   

   

 

   

       
 

(DRAM) of a computing device.  In this attack, through malicious codes, the adversaries 

can evade the defence mechanisms which are often deployed through traditional security 

software and features (such as memory isolation) to carry out the memory disturbance 

attack. Similarly, in relation to a CC environment, Rowhammer Fault Injection, which is a 

recently discovered real-time microarchitecture attack, can be launched remotely to obtain 

full access to the Dynamic Random-Access Memory (DRAM) of a CC device.  Such an 

attack can pollute system memory, access and alter sensitive data and gain full control of 

the system. 

 

Rowhammer is an issue with some new DRAM devices in which repeatedly 

accessing a row of memory can result in bit flips in adjoining rows. Through the Project 

Zero at Google, Seaborn and Dullien (2015) tested a collection of laptops and discovered 

the issue with some of those laptops. Their experiment was based on the implementation 

of two privileged escalation exploits that utilised such an impact.  The first test involved 

employing Rowhammer-induced bit flips to gain kernel privileges on x86-64 Linux when 

executed as an unprivileged userland process.  Seaborn and Dullien (2015) discovered that 

the process, when executed on a machine susceptible to the Rowhammer issue, was capable 

of triggering bit flips in page table entries (PTEs).  It was capable of employing this to gain 

write access to its own page table, and as a result, gain read-write access to all of physical 

memory (Seaborn and Dullien, 2015). This test exploit on x86 systems employs CLFLUSH 

instruction to create many accesses to the underlying DRAM.  Although creating bit flips 

in PTEs is just one vector of exploitation (as other methods for exploiting bit flips are 

possible too), nevertheless Seaborn and Dullien’s experiment, which itself was based on a 

study by Kim et al. (2014), is a novel contribution to the field.   

 

Repeatedly accessing two “aggressor” memory locations within the process’s 

virtual address space can result in bit flips in a third, “victim” location, which likely to be 

outside the virtual address space of the process.  The victim location is in a different DRAM 

row from the aggressor locations, and therefore in a different 4k page (Seaborn and Dullien, 

2015; Kim et al., 2014).  This works since DRAM cells have been growing smaller and 

closer together.  Due to the fact that the DRAM production reduces features to smaller 

physical sizes to install more memory capacity onto a chip, it has become more problematic 

to stop DRAM cells interacting electrically with each other. Consequently, gaining access 

to one location in memory can disturb adjacent locations, resulting in charge leaking into 

or out of adjacent cells. With sufficient accesses, this can modify a cell’s value from 1 to 0 

or vice versa (Fournaris et al., 2017; Seaborn and Dullien, 2015; Kim et al., 2014). 

 

3. Countermeasures 
 

3.1 Cache-Based Side-Channel Attacks 

 
The purpose of a SCA countermeasures must be to hide leakage or reduce it so 

that it holds minor or no valuable information for an adversary to launch an attack. 

Countermeasures against SCAs can be categorised into two groups of isolation measures 

and randomisation measures. Under the isolation measure, adversaries will no longer be 

able to gain access to the victim’s machine’s cache. Thus, carrying out an interference-

related attack will become almost impossible.  Isolation can be attained by dividing cache 

either statically or dynamically into zones associated with individual processes, for 

instance, by employing hardware virtualisation (Fournaris et al., 2017; Zhang and Lee, 



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

2014). In randomisation approach, side channel information is randomised.  Therefore, no 

accurate information is emitted from caches. This denotes that through the randomisation 

approach, sensitive data is disassociated from the emission trace and is concealed by hiding 

this data through a randomly produced number.  

 

A variant of this technique is information hiding in which random noise is added 

to the leakage channel, thus rendering the associate to the leakage trace unusable 

(Fournaris, 2017; Fournaris et al., 2017; Zhang and Lee, 2014). There are two methods by 

which one can determine randomisation, including inserting random noise in the attacker’s 

observations and randomising the mappings from memory addresses to cache sets.  Often 

the proposed countermeasures included in the previously mentioned two categories focus 

on neutralising the cache features that a cache SCA exploits. Virtual time and black-box 

mitigation methods are also among the existing countermeasures against the SCAs (Yarom 

et al., 2016). Moreover, time partitioning can be employed through routine Cache Flushing, 

Lattice Scheduling, Memory Controller Partitioning, structuring Execution Leases and 

executing Kernel address space isolation (Fournaris et al., 2017).  

 

Configurable cache architecture can be employed to provide hardware assisted 

defence against cache based channel attacks (Rani and Venkateswarlu, 2014; Wang and 

Lee, 2007; Page, 2005).  The cache is dynamically divided into safeguarded regions and 

are capable of being configured for an application.  In partitioned caches, there is a section 

of the cache that is assigned exclusively to the safeguarded process so as to avert 

information leakage. Therefore, partitioned cache mechanism can be deployed as a defence 

approach against cache based channel attacks. A partitioned cache will need to be included 

in devices that are susceptible to SCAs to separate the cache behaviour of one process to 

another. As a result, it will stop process interference through the provision of adequate 

space to store the entire S-box in cache, and it will be locked when it is pre-loaded. 

Segregation does not permit forcible flushing of the cache; furthermore, partitioned cache 

employs longer cache lines that render attacks more problematic. Moreover, a method 

called partition-locked cache (PLcache) (Wang and Lee, 2007) can be employed to deal 

with cache sharing issue. This method will employ a fine-grained locking control to isolate 

only the cache lines encompassing vital data. Through this method, only those cache lines 

that are of interest are locked by making private partitions.   

 

The effectiveness of the defence mechanisms against SCAs proposed in the 

literature is open to question since many of them can be circumvented by employing the 

Rowhammer attacks through the techniques that were described in sub-section 2.2. 

Moreover, because SCAs leverage the physical elements of systems, many 

countermeasures take the approach of enhancing the security of the system design and 

development (Zhang and Lee, 2014). For example, to safeguard against cache SCAs 

different secure cache architectures have been presented in the literature (Domnitser et al., 

2012; Wang and Ruby, 2008). These cache mechanisms are aimed at preventing specific 

kinds of SCAs without vast performance costs. Although the performance of such 

mechanisms can be assessed against criteria, nevertheless the efficiency of their security 

has only been examined qualitatively. However, it is necessary to carry out general 

quantitative methods of measuring the potential side-channel information leakage to be 

able to compare various cache architectures more accurately (Zhang and Lee, 2014). Such 

quantitative methods are necessary as they can expose which elements of the system are 

more vulnerable to emitting sensitive information, and facilitate the trade-off analysis 

among performance, power and security of various cache mechanisms.   



   

 

   

   

 

   

      

      

    

 

 

   

   

 

   

   

 

   

       
 

 

3.1 Rowhammer Attacks 

 
Configurable cache architecture can be employed to provide hardware assisted 

defence against cache based channel attacks (Wang and Lee, 2007; Page, 2005).  The cache 

is dynamically divided into safeguarded regions and are capable of being configured for an 

application. To counteract a Rowhammer attack, Rowhammer-induced bit flips will need 

to be blocked by altering DRAM, memory controllers or the combination of both. A system 

must not also trigger any specific row repeatedly during a specific refresh point if the 

adjacent rows are not refreshed simultaneously. Moreover, Global Standards for the 

Microelectronics Industry (JEDEC, 2014) has recently published LPDDR4 standard for 

DRAM, which outlines two Rowhammer countermeasure methods that a memory 

controller must employ. These include “Targeted Row Refresh” (TRR) mode and 

“Maximum Activate Count” (MAC) metadata field. The TRR enables the memory 

controller to require the DRAM device to refresh a row’s neighbours, whereas the MAC 

metadata field outlines the number of activations that a given row is safely capable of 

coping with before its neighbours require refreshing. Another countermeasure against 

Rowhammer arrack is to employ the physical probing the memory bus via a high-

bandwidth oscilloscope by determining the voltage on the pins at the DIMM slots (Pessl et 

al., 2016). Another method of countering Rowhammer attack is to employ time analysis 

based on the Rowbuffer conflict to be able to determine address pair that is part of the same 

bank and then apply this address set to rebuild the precise map function automatically 

(Fournaris et al., 2017; Xiao et al., 2016; Pessl et al., 2016). Yet another simple solution 

requires that DRAM vendors build Rowhammer mitigations internally within a DRAM 

device, which does not need special memory controller support. 

 

The CFLUSH command available on user space (userland) for x86 devices has 

also been employed (GitHub, 2017; Fournaris et al., 2017; Seaborn and Dullien, 2015; Kim 

et al., 2014) as a countermeasure to evict cache lines associated with the aggressor row 

addresses among its memory accesses (GitHub, 2017; Fournaris et al., 2017; Seaborn and 

Dullien, 2015; Kim et al., 2014).  

 

The existing countermeasures against RHAs do not appear appropriate to address 

these attacks within CC environments. In the context of cloud, RHAs are executed on 

different attack interfaces (e.g. scripting language based attacks) by deploying web 

browsers that are activated remotely, a view supported also by Gruss et al. (2016) and 

Bhattacharya and Mukhopadhyay (2016). Therefore, new eviction methods will need to be 

developed to replace the existing flush instructions so that Rowhammer attacks within 

cloud environments can be addressed more effectively. The new methods must be able to 

facilitate the identification of an eviction set comprising of addresses that will be part of 

the same cache set of the aggressor rows. For instance, this can be achieved by employing 

a time attack to identify the eviction set. Another eviction method can be based on the 

reverse engineering analysis of the target system (Bosman et al., 2016). However, this can 

be a complex task considering the fact that modern Intel processors after Sandy Bridge 

presented an intricate hash function to partition the cache into slices even further (Maurice 

et al., 2015; Hund et al., 2013). Furthermore, in a recent paper (Van der Veen et al., 2016), 

employing the Direct Memory Access memory management technique has also been 

suggested as a method to bypass CPUs and their caches to address the Rowhammer attacks.  

  



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

There are various other approaches that can be utilised as countermeasures to deal 

with Rowhammer attacks. For instance, by regularly refreshing the entire rows, one can 

expect the disturbance errors to be eradicated for adequately short refresh intervals (RI ≤ 

RIth) even though regular refreshing can reduce performance and energy-efficiency (Kim 

et al., 2014). Another method requires the manufacturers to retire DRAM cells that they 

determine as victim cells and remap them to spare cells (Kim et al., 2014).  The end-users, 

themselves, could also retire DRAM sells by assessing and utilising system-level 

techniques for deactivating faulty addresses or remapping defective addresses to reserved 

addresses (Kim et al., 2014). Finding the hot row (i.e. specific row or aggressor row) and 

refreshing their adjacent rows are another way of dealing with a Rowhammer attack. A 

mechanism called Probabilistic Adjacent Row Activation (PARA), which is implemented 

in the memory Controller, is an approach proposed by Kim et al. (2014) to prevent DRAM 

disturbance errors. Through the PARA, when a row is constantly refreshed and closed, its 

neighbouring rows will also be refreshed with some low probability.  

A Run-Time Memory Hot Detector (ARMOR), designed and developed by the 

researchers based in The University of Manchester’s School of Computer Science 

(Ghasempour et al., 2015), is another approach to mitigate Rowhammer attacks. ARMOR 

is similar to that of DRAM in that it is implemented at the memory level. ARMOR is 

claimed to be able to detect all the possible Row Hammer errors, screen the activation flow 

at the memory level and also identify hot rows (specific rows) that might be hammered at 

run-time. Another solution to identify Rowhammer is to employ the last-level cache 

counter facility to produce an interrupt after N misses (Aweke et al., 2016).  This method 

involves monitoring the last-level cache misses on a refresh interval and row access with 

high temporal locality on certain processors such as Intel/AMD (Fournaris et al., 2017).  In 

cases where missing cache goes beyond a threshold, a selective refresh is carried out on 

the susceptible row.     

 

Furthermore, software-based solutions have also been introduced to address 

Rowhammer attacks. These software-based mitigations containing ad-hoc defence 

techniques can be implemented on commodity systems.  For instance, these include: 

rewriting the flush instructions that have been adopted in Google NaCl (Fournaris et al., 

2017), doubling the RAM refresh rates (Kim et al., 2014), eliminating unprivileged access 

to the pagemap interface (Salyzyn, 2015; Shutemov, 2015; Seaborn and Dullien, 2015), 

and also eliminating the Clflush instruction (Seaborn and Dullien, 2015).  Another example 

is that pagemap interface can be prevented from userland in new kernel Linux in order to 

stop Rowhammer attacks. However, there are emerging attacks that are capable of 

bypassing the above stated countermeasures by facilitating Rowhammer triggering 

through, for example, the use of JavaScript (Gruss et al., 2016) or native code (Qiao and 

Seaborn, 2016) without performing cache eviction. Likewise, the pagemap based 

countermeasure has been circumvented by employing various methods of establishing the 

machine address map to a physical address or the map to the virtual userland (Fournaris et 

al., 2017; Pessl et al., 2016; Xiao et al., 2015).   

 

In a recent study, Gruss et al. (2017) proposed a novel Rowhammer attack and 

exploitation technique, Memory Waylaying, demonstrating that even the combination of 

all the existing countermeasures against Rowhammer attacks are ineffective. This new 

technique brings into question previous assumptions for activating the Rowhammer bug 

and ultimately the proposed countermeasures. As discussed previously, various DRAM 

rows will need to be hammered to trigger Rowhammer attack.  However, based on Gruss 

et al.’s MW technique, only one DRAM row needs to be constantly open for such a 



   

 

   

   

 

   

      

       

    

 

 

   

   

 

   

   

 

   

       
 

malicious purpose.  Other ad-hoc approaches such as deactivating page duplication by 

default (Microsoft, 2017; Red Hat, 2017) as also cited by Gruss et al. (2017) can only stop 

certain Rowhammer attacks but not all Rowhammer attacks (Bosman et al., 2016). In 

addition, few hardware producers have taken steps to mitigate potential Rowhammer 

attacks against desktop and laptop machines by implementing ECC memories in these 

machines. 

 

It has been argued (Fournaris et al., 2017; Lanteigne, 2016) that providing 

memories with ECC does not provide a better security as ECC cannot identify various bit 

flips on the same row so as to correct them. Likewise, it has also been contended (Kim et 

al., 2014) that the hardware-based solutions that take the approach of doubling the DRAM 

refresh rate cannot still prevent bit flips from being exploited, as this rate will require an 

upsurge of up to eight times to accomplish a capable mitigation. However, such arguments 

are in contradiction with the results of the tests that the researchers involved with the 

Google Project Zero (Seaborn and Dullien, 2015) performed on the desktop machines with 

ECC memory. According to the test results, no bit flips were detected on the desktop 

machines which had ECC memory implemented.   

 

 

4. Recommendations 

 
To counteract the discussed attacks, we suggest injecting dummy operations 

within AES algorithms, resulting in an upsurge in the runtime. With adequate dummy loads 

injected, it will be very difficult to determine whether a specific cache-hit or cache-miss is 

generated by genuine or false execution. Although injecting dummy operations will modify 

the runtime randomly, at the same time, it will be independent of cache activities. Note that 

this approach must be considered only in cases where attacks are carried out based on 

behaviour traces as opposed to the timing information. Reordering Memory Access can 

also be an effective countermeasure whereby the random reordering of memory access will 

decrease the connection among a captured behaviour trace (or runtime) and the input and 

algorithm. To achieve this, one would need to employ a non-deterministic processor 

architecture. 

 

Efficient implementation of Advanced Encryption Standard (AES) algorithms in 

hardware can also be used as a countermeasure to safeguard modern hardware against 

CBSCAs. Few manufacturers have started implementing better hardware support in the 

design of their processor technologies to offer better constant-time cryptography 

operations. For instance, Intel has introduced AES New Instructions (AES NI), which is a 

new encryption instruction set that enhances the AES algorithm and speeds up the 

encryption of data in the two categories of Intel Xeon processor and the Intel Core 

processor. Thus, AES-NI provides an advantage in relation to speed over other 

implementations. Moreover, since AES-NI, which consists of seven new instructions, was 

specifically developed to be constant-time, it provides a better protection against SCAs 

over some other software implementations. The purpose of AES instructions is to alleviate 

all known timing and cache side channel emission of sensitive data from Ring 3 spy 

processes. Their latent period is data-independent, and because all the computations are 

carried out internally by the hardware, there will be no need for lookup tables. Thus, if AES 

instructions are utilised properly, the AES encryption/decryption and the Key Expansion 

will then have data-independent timing and involve only data-independent memory access. 



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

As a result, the AES instructions will facilitate writing high performance AES software 

which is simultaneously safeguarded against the currently known software SCAs. 

 

 

5. Discussion  

 
In this study, we analysed Microarchitectural attack vectors, followed by a 

detailed examination of countermeasures that can be used to address these attacks. Through 

the findings of the study, we can deduce that despite the many advancements in computer 

security, SCAs continue to evolve and wreck a havoc on shared, modern computing 

hardware. Security researchers are simply playing a catch-up game with criminals as 

demonstrated by a wide range of sophisticated Microarchitectural attacks discussed in the 

literature. Everytime a new hardware vulnerability is discovered, a new mitigation research 

path also begins. As a result, security researchers have proposed several countermeasures 

and continue to suggest new ones. However, despite being useful, these suggestions are 

often restrictive or impractical. Furthermore, almost all of the existing solutions incur 

significant overheads or degradation in computing performance, which, in turn, weakens 

the optimisation of computing hardware such as processors. The level of such overheads 

and degradation in hardware performance, often caused by the methods, themselves, has 

not been adequately reported in the research papers. Thus, it is difficult to assess the 

effectiveness of such proposed countermeasures. It is also reasonable to state that an 

interaction between Microarchitectural side channels on one hand and inclination to 

optimise hardware performance via Microarchitectural improvements on the other hand 

have given rise to the absence of reliable defence mechanisms when producing hardware 

components. Adding to the stated issues, it is clear that the existing countermeasures for 

Microarchitectural attacks are not proactive but reactive in that they are there to mitigate 

single, specific attacks that are known to the research community. In addition, these 

countermeasures are not generic to be able to address future, unknown attacks that take 

advantage of different variations of Microarchitectural attacks.  

 

 

6. Research Directions 
 

From this work, it can be deduced that although there are a few studies that have 

proposed advanced countermeasures against the attack vectors discussed in this article, the 

effectiveness of these countermeasures are not fully known. Therefore, independent 

assessments of these countermeasures will need to be carried out to determine the efficacy 

of these defence mechanisms against a given attack vector, and to determine whether a 

mitigation mechanism can be bypassed or not. Hence, as a direction for future research, 

various exploitation techniques will need to be developed to establish the reliability of the 

proposed countermeasures present in the state-of-the-art, and then test them in a 'targeted' 

and 'predictable' manner within a dedicated laboratory. As future research direction, one 

can also conduct distinct studies with each focusing only one specific attack vector 

introduced in this paper.  Each given study must carry out an independent assessment of 

one high-impact countermeasure (i.e. one that has been highly cited) previously proposed 

for each of the attack vectors. The purpose of each specific assessment will be to determine 

how effective the countermeasure against a given attack vector would be, and to determine 

whether or not that mitigation mechanism can be bypassed. To this end, exploitation 

techniques must be developed to establish whether the proposed countermeasures can be 



   

 

   

   

 

   

      

      
 

    

 

 

   

   

 

   

   

 

   

       
 

undermined or not, and then tested in a ‘targeted’ and ‘predictable’ manner within a 

dedicated laboratory. 

 

References 
 

Aciimez, O. (2007). Yet Another Microarchitectural Attack: Exploiting I-Cache. 

Proceedings of the ACM Workshop on Computer Security Architecture, pp. 11-18. 

 

Aciimez, O. and Koc, C. K. (2009). Microarchitectural Attacks and Countermeasures. In 

Cryptographic Engineering, pp. 475-504. Springer, Boston, US. 

 

Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P. and Sunar, B. (2007). Trojan 

Detection Using IC Fingerprinting. IEEE Symposium on Security and Privacy (SP), pp. 

296-310. 

 

Apecechea, G.I., Inci, M.S., Eisenbarth, T. and Sunar, B. (2014). Fine Grain Cross-VM 

Attacks on Xen and VMware are possible!. IACR Cryptology ePrint Archive, p.248. 

 

Ashokkumar, C., Giri, R.P. and Menezes, B. (2016). Highly Efficient Algorithms for AES 

Key Retrieval in Cache Access Attacks. IEEE European Symposium on Security and 

Privacy (EuroS&P), pp. 261-275. 

 

Atici, A.C., Yilmaz, C. and Savas, E. (2013). An Approach for Isolating the Sources of 

Information Leakage Exploited in Cache-Based Side-Channel Attacks. 7th IEEE 

International Conference on Software Security and Reliability-Companion (SERE-C), 

pp. 74-83. 

 

Bernstein, D. (2005). Cache-timing attacks on AES. Available at: 

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf (Accessed: 23rd May 2017). 

 

Bhattacharya, S. and Mukhopadhyay. (2016). Curious Case of Rowhammer: Flipping 

Secret Exponent Bits Using Timing Analysis. In International Conference on 

Cryptographic Hardware and Embedded Systems, pp. 602-624. Springer, Berlin, 

Germany. 

 

Blomer, J. and Krummel, V. (2007). Analysis of Countermeasures against Access Driven 

Cache Attacks on AES. 14th International Workshop on Selected Areas in 

Cryptography, pp. 96-109. 

 

Bluhm, M. and Gueron, S. (2015). Fast Software Implementation of Binary Elliptic Curve 

Cryptography. Journal of Cryptographic Engineering, 5(3), pp.215-226. 

 

Bonneau, J. and Mironov, I. (2006). Cache-Collision Timing Attacks against AES. 

International Workshop on Cryptographic Hardware and Embedded Systems, pp. 201-

215. 

 

Bosman, E., Razavi, K., Bos, H. and Giurida, C. (2016). Dedup Est Machina: Memory 

Deduplication as an Advanced Exploitation Vector. IEEE Symposium on Security and 

Privacy (SP), pp. 987-1004. 

 



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

Brumley, B.B. (2015). Cache Storage Attacks. In Cryptographers' Track at the RSA 

Conference, pp. 22-34. Springer, Cham. 

 

Chen, C., Wang, T., Kou, Y., Chen, X. and Li, X. (2013). Improvement of Trace-Driven I-

Cache Timing Attack on the RSA Algorithm. Journal of Systems and Software, 86(1), 

pp. 100-107. 

 

Chiappetta, M., Savas, E. and Yilmaz, C. (2016). Real Time Detection of Cache-Based 

Side-Channel Attacks Using Hardware Performance Counters. Applied Soft 

Computing, 49, pp.1162-1174. 

 

Fournaris, A.P., Fraile, L.P. and Koufopavlou, O. (2017). Exploiting Hardware 

Vulnerabilities to Attack Embedded System Devices: A Survey of Potent 

Microarchitectural Attacks. Electronics, 6(3), p. 52. 

 

Gallais, J.F., Kizhvatov, I. and Tunstall, M. (2010). Improved Trace-Driven Cache-

Collision Attacks against Embedded AES Implementations. WISA, 6513, pp. 243-257. 

 

Ge, Q., Yarom, Y., Cock, D. and Heiser, G. (2016). A Survey of Microarchitectural Timing 

Attacks and Countermeasures on Contemporary Hardware. Journal of Cryptographic 

Engineering, pp.1-27. 

 

Genkin, D., Valenta, L. and Yarom, Y. (2017). May the Fourth Be with You: A 

Microarchitectural Side Channel Attack on Several Real-World Applications of 

Curve25519. ACM Conference on Computer and Communications Security (CCS), pp. 

1-14. 

 

Genkin, D., Shamir, A. and Tromer, E. (2014). RSA Key Extraction via Low-Bandwidth 

Acoustic Cryptanalysis. In International Cryptology Conference, pp. 444-461. 

Springer, Berlin, Germany. 

 

GitHub. (2017). Test DRAM for Bit Flips Caused by the Rowhammer Problem. Available 

at: https://github.com/google/rowhammer-test (Accessed: 25th October 2017). 

 

Gruss, D., Lipp, M., Schwarz, M., Genkin, D., Juffinger, J., O'Connell, S., Schoechl, W. 

and Yarom, Y. (2017). Another Flip in the Wall of Rowhammer Defenses. arXiv 

preprint arXiv:1710.00551, pp. 1-17. 

 

Gruss, D., Maurice, C., Wagner, K. and Mangard, S. (2016). Flush + Flush: A Fast and 

Stealthy Cache Attack. In Detection of Intrusions and Malware, and Vulnerability 

Assessment, pp. 279-299. Springer International Publishing. 

 

Gullasch, D., Bangerter, E. and Krenn, S. (2011). Cache Games-Bringing Access-Based 

Cache Attacks on AES to Practice. IEEE Symposium on Security and Privacy (SP), pp. 

490-505. 

 

Hashizume, K., Rosado, D.G., Fernndez-Medina, E. and Fernandez, E.B. (2013). An 

Analysis of Security Issues for Cloud Computing. Journal of Internet Services and 

Applications, 4(1), p.5. 

 

https://github.com/google/rowhammer-test


   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

Hund, R., Willems, C. and Holz, T. (2013). Practical Timing Side Channel Attacks against 

Kernel Space ASLR. IEEE Symposium on Security and Privacy (SP), pp. 191-205. 

 

Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T. and Sunar, B. (2016). Cache 

Attacks Enable Bulk Key Recovery on the Cloud. In International Conference on 

Cryptographic Hardware and Embedded Systems, pp. 368-388. Springer, Berlin, 

Germany. 

 

Irazoqui, G., Inci, M.S., Eisenbarth, T. and Sunar, B. (2014). Wait a Minute! A Fast, Cross-

VM Attack on AES. International Workshop on Recent Advances in Intrusion 

Detection, pp. 299-319. 

 

Irazoqui, G., Eisenbarth, T. and Sunar, B. (2015, a). S $ A: A Shared Cache Attack That 

Works Across Cores and Defies VM Sandboxing-and Its Application to AES. IEEE 

Symposium on Security and Privacy (SP), pp.591-604. 

 

Irazoqui, G., Inci, M.S., Eisenbarth, T. and Sunar, B. (2015, b). Know Thy Neighbor: 

Crypto Library Detection in Cloud. Proceedings on Privacy Enhancing Technologies, 

(1), pp.25-40. 

 

Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K. and Mutlu, 

O. (2014). Flipping Bits in Memory without Accessing Them: An Experimental Study 

of DRAM Disturbance Errors. Proceedings of the 41st ACM/IEEE Annual 

International Symposium on Computer Architecture, 42(3), pp. 361-372. 

 

Kong, J., Aciicmez, O., Seifert, J.P. and Zhou, H. (2013). Architecting against Software 

Cache-Based Side-Channel Attacks. IEEE Transactions on Computers, 62(7), pp. 

1276-1288. 

 

Lauradoux, C. (2005). Collision Attacks on Processors with Cache and Countermeasures. 

WEWoRC, 5, pp.76-85. 

 

Ma, C.G., Wang, D. and Zhao, S.D. (2014). Security Flaws in Two Improved Remote User 

Authentication Schemes Using Smart Cards. International Journal of Communication 

Systems, 27(10), pp. 2215-2227. 

 

Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O. and Francillon, A. (2015). Reverse 

Engineering Intel Last-Level Cache Complex Addressing Using Performance 

Counters. In International Workshop on Recent Advances in Intrusion Detection, pp. 

48-65. Springer, Cham. 

 

Microsoft Corporation. (2017). Data Deduplication Overview. Available at: 

https://technet.microsoft.com/en-us/library/hh831602(v=ws.11).aspx (Accessed: 25th 

November 2017). 

 

Mirvaziri, H., Ismail, K.J. and Hanapi, Z.M. (2009). Message Based Random Variable 

Length Key Encryption Algorithm. Journal of Computer Science, 5(8), p.573. 

 

Neve, M. and Seifert, J.P. (2006). Advances on Access-Driven Cache Attacks on AES. In 

Selected Areas in Cryptography, vol. 4356, pp. 147-162, Springer, Berlin, Germany. 



   

 

   

   

 

   

   

 

   

       
 

    

 

 

   

   

 

   

   

 

   

       
 

 

Oren, Y., Kemerlis, V.P., Sethumadhavan, S. and Keromytis, A.D. (2015). The Spy in the 

Sandbox: Practical Cache Attacks in JavaScript and Their Implications. Proceedings of 

the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 

1406-1418. 

 

Osvik, D.A., Shamir, A. and Tromer, E. (2006). Cache Attacks and Countermeasures: The 

Case of AES. The RSA Conference Cryptographers' Track, pp. 1-20. 

 

Page, D. (2005). Partitioned Cache Architecture as a Side-Channel Defence Mechanism. 

IACR Cryptology ePrint Archive, p. 280. 

 

Percival, C. (2005) Cache Missing for Fun and Profit. Available at: http: 

//www.daemonology.net/papers/htt.pdf (Accessed: 19th June 2017). 

 

Pessl, P., Gruss, D., Maurice, C., Schwarz, M. and Mangard, S. (2016). DRAMA: 

Exploiting DRAM Addressing for Cross-CPU Attacks. Proceedings of the 25th 

USENIX Security Symposium, pp. 565-581. 

 

Schwarz, M., Weiser, S., Gruss, D., Maurice, C. and Mangard, S. (2017). Malware Guard 

Extension: Using SGX to Conceal Cache Attacks. arXiv preprint arXiv:1702.08719. 

 

Seaborn, M. and Dullien, T. (2015). Exploiting the DRAM Rowhammer Bug to Gain 

Kernel Privileges. Black Hat, pp. 1-71. 

 

Seibert, J., Okhravi, H. and Sderstrm, E. (2014). Information Leaks without Memory 

Disclosures: Remote Side Channel Attacks on Diversified Code. Proceedings of the 

ACM SIGSAC Conference on Computer and Communications Security, pp. 54-65. 

 

Spreitzer, R. and Plos, T. (2013, a). On the Applicability of Time-Driven Cache Attacks 

on Mobile Devices. In International Conference on Network and System Security, pp. 

656-662. Springer Berlin Heidelberg. 

 

Spreitzer, R. and Plos, T. (2013, b). Cache-Access Pattern Attack on Disaligned AES T-

Tables. In International Workshop on Constructive Side-Channel Analysis and Secure 

Design, pp. 200-214. Springer, Berlin, Germany. 

 

Spreitzer, R. and Grard, B. (2014). Towards More Practical Time-Driven Cache Attacks. 

In IFIP International Workshop on Information Security Theory and Practice, pp. 24-

39. Springer, Berlin, Heidelberg. 

 

Standaert, F.X., Malkin, T. and Yung, M. (2009). A Unified Framework for the Analysis 

of Side-Channel Key Recovery Attacks. Eurocrypt, 5479, pp. 443-461. 

 

Tiri, K., Aciimez, O., Neve, M. and Andersen, F. (2007). An Analytical Model for Time-

Driven Cache Attacks. In International Workshop on Fast Software Encryption, pp. 

399-413. Springer, Berlin, Germany. 

 

Van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice, C., Vigna, G., Bos, 

H., Razavi, K. and Giuffrida, C. (2016). Drammer: Deterministic Rowhammer Attacks 



   

 

   

   

 

   

      

       
 

    

 

 

   

   

 

   

   

 

   

       
 

on Mobile Platforms. Proceedings of the ACM SIGSAC Conference on Computer and 

Communications Security, pp. 1675-1689. 

 

Wang, Z. and Lee, R.B. (2007). New Cache Designs for Thwarting Software Cache-Based 

Side Channel Attacks. Proceedings of the 34th Annual ACM International Symposium 

on Computer Architecture, 35(2), pp. 494-505. 

 

Wu, Z., Xu, Z. and Wang, H. (2012). Whispers in the Hyper-space: High-speed Covert 

Channel Attacks in the Cloud. USENIX Security symposium, pp. 159-173. 

 

Xia, W., Wen, Y., Foh, C. H., Niyato, D. and Xie, H. (2015). A Survey on Software-Defined 

Networking. IEEE Communications Surveys and Tutorials, 17(1), pp. 27-51. 

 

Xiao, Y., Zhang, X., Zhang, Y. and Teodorescu, R. (2016). ‘One Bit Flips, One Cloud 

Flops: Cross-VM Row Hammer Attacks and Privilege Escalation’. In USENIX Security 

Symposium, pp. 19-35. 

 

Yarom, Y. and Falkner, K. (2014). FLUSH + RELOAD: A High Resolution, Low Noise, 

L3 Cache Side-Channel Attack. The Proceedings of the 23rd USENIX Security 

Symposium, pp. 719-732. 

 

Yarom, Y. and Benger, N. (2014). Recovering OpenSSL ECDSA Nonces Using the 

FLUSH + RELOAD Cache Side-channel Attack. IACR Cryptology ePrint Archive, pp. 

1-11. 

 

Zhang, Y., Juels, A., Reiter, M. K. and Ristenpart, T. (2012, a). Cross-VM Side Channels 

and Their Use to Extract Private Keys. Proceedings of the ACM Conference on 

Computer and Communications Security, pp. 305-316. 

 

Zhang, Y., Li, M., Bai, K., Yu, M. and Zang, W. (2012, b). Incentive Compatible Moving 

Target Defense against VM-Colocation Attacks in Clouds. Information Security and 

Privacy Research, pp. 388-399. 

 

Zhang, Y., Juels, A., Reiter, M. K. and Ristenpart, T. (2014). Cross-Tenant Side-Channel 

Attacks in PaaS Clouds. Proceedings of the ACM SIGSAC Conference on Computer 

and Communications Security, pp. 990-1003. 

 

Zhang, T., Zhang, Y. and Lee, R.B. (2016, a). Cloudradar: A Real-Time Side-Channel 

Attack Detection System in Clouds. In International Symposium on Research in 

Attacks, Intrusions, and Defenses, pp. 118-140. Springer International Publishing. 

 

Zhang, L., Ding, A. A., Fei, Y. and Jiang, Z. H. (2016, b). Statistical Analysis for Access-

Driven Cache Attacks Against AES. IACR Cryptology ePrint Archive, p. 970. 

 

Zhang, T. and Lee, R.B. (2014). Secure Cache Modeling for Measuring Side-Channel 

Leakage. Technical Report, Princeton University, pp. 1-27. 

 

 

 


