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Abstract. A scenario that often encounters in the event of aggregating options of different experts for the acquisition of a robust
overall consensus is the possible existence of extremely large or small values termed as outliers in this paper, which easily lead to
counter-intuitive results in decision aggregation. This paper attempts to devise a novel approach to tackle the consensus outliers
especially for non-uniform data, filling the gap in the existing literature. In particular, the concentrate region for a set of non-
uniform data is first computed with the proposed searching algorithm such that the domain of aggregation function is partitioned
into sub-regions. The aggregation will then operate adaptively with respect to the corresponding sub-regions previously parti-
tioned. Finally, the overall aggregation is operated with a proposed novel consensus measure. To demonstrate the working and
efficacy of the proposed approach, several illustrative examples are given in comparison to a number of alternative aggregation
functions, with the results achieved being more intuitive and of higher consensus.

Keywords: Aggregation function, concentrate region, t-norm, t-conorm, consensus measure

1. Introduction

When dealing with real-world problems, the opin-
ions of different experts are usually aggregated in order
to provide more robust solutions. Aggregation func-
tions that aim to combine multiple arguments for the
production of a representative consensus are of signif-
icant importance in decision making, especially in the
presence of the uncertain and noisy settings. It has at-
tracted wide attention for both researchers and prac-
titioners with a number of important approaches and
their variations [4,32] proposed in recent literature. Al-
though methods constructed on the basis of fuzzy sets
[19] and evidence theory [14] could deal with sce-
narios under uncertainties, more dedicated approaches
are in demand to perform decision aggregation where
outliers exist. A common problem that often exists
in dealing with decision aggregation is whether the
consensus obtained is representative of the majority,
reflecting a unbiased universal opinion. It is known
that the aggregation of multiple judgements from dif-
ferent sources are often more accurate and reliable
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than individuals’ dominating judgements. This is also
known as the wisdom of crowds [26], with a number
of significant applications such as political and eco-
nomic forecasting, nuclear and chemical safety evalu-
ation and even possible responses to restless volcanoes
[26]. A scenario that often encounters when aggregat-
ing multiple judgements is the existence of individuals
whose judgements may significantly deviate from their
peers’, which are termed outliers in this paper.

As a numerical example, suppose there are 10 wit-
nesses who give their opinions with respect to the
probability of Perter being guilty of a crime as shown
in Table 1. Out of 10 different witnesses, 6 tend to be-
lieve Peter is more guilty with probability beliefs over
0.5, 1 is totally neutral, while the remaining three opin-
ions favour Peter being innocent. In case of the ag-
gregated result (0.46) calculated over purely arithmetic
mean, the final judgement may be counter-intuitive es-
pecially considering that the majority vote to the oppo-
site. A conventional approach to improve this situation
is to remove the highest and lowest values. For Peter’s
example again, the probability of being guilty will be
0.481, still leading to a counter-intuitive result, if both
the maximal value (0.7) and the minimal value (0.05)
are removed.
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A very recent review is conducted in [6], which
analyses the most popular aggregation operators out
of 50 most notable studies. The interrelationship be-
tween input argues is typically considered in numerous
popular aggregation operators including the discrete
Choquet (Ch) integral [15], the Bonferroni Mean (BM)
[24], the Muirhead mean [21], the Maclaurin symmet-
ric mean [22] and the Heronian mean (HM) [10]. Ad-
ditionally, it’s also common to observe aggregation op-
erators extended in combination with fuzzy concepts
with the aim to tackle uncertainty and imprecision. For
instance, the Muirhead mean, which is commonly em-
ployed in decision making, is combined with intui-
tuiionistic fuzzy numbers in [21], and the Maclaurin
symmetric mean has been studied in [22] in combina-
tion with linguistic information and intuitionistic fuzzy
numbers.

In other literature, the Robust Estimators of Loca-
tion (REL) [27] is another means to aggregate data
with outliers, where the averages are computed us-
ing the shortest contiguous sub-sample containing at
least half of the data. However, apart from the outliers,
non-outliers may also be discarded when aggregation.
Another popular set of approaches [30,31] propose to
only accept the aggregated result if the consensus mea-
sure meets a predefined threshold. However, a possi-
ble pitfall of these approaches lies in the mechanism
that the original values requires to be modified in order
to pass the consensus measure, which may not be de-
sirable for many cases. Alternatively the density-based
means (DBM) [2] has been proposed for data with out-
liers which are weighted by their density. However,
in the event of outliers with extremely large or small
values, DBM still aggregates counter-intuitive results.
Moreover, in the event of no outliers, the aggregated
results may also be counter-intuitive, as it may differ
from the pure arithmetic mean.

Another interesting and more general type of ag-
gregation operator is the family of Ordered Weighted
Averaging (OWA) operators [33], based on which a
number of aggregation functions have been proposed
[36,35]. OWA is a parameterized operator based on
the ordering of extraneous variables that it is applied
to. The fundamental aspect of this family of opera-
tors is the reordering step in which the extraneous vari-
ables are rearranged in descending order, with their
values subsequently integrated into a single aggregated
one. In particular, the Power Average (PA) function
and Power OWA (POWA) function [34] have been pro-
posed, whose weights depend upon the inputs and al-
low values being aggregated to support and reinforce
each other. A number of aggregation functions [32]
have been proposed based on the PA function, which
allow adjacent values to support and reinforce each
other by considering correlations of the underlying
data, providing potential benefit to aggregating data
with outliers.

The above review suggests that although popular
aggregation operators such as the Ch, BM, HM, PA
and their extensions take into account the relationship
of input arguments, but without explicitly consider-
ing scenarios where outliers may exist. While methods
such as the REL and DBM may work with outliers,

they could still suffer from undesired pitfalls includ-
ing discarding non-outliers and generating counter-
intuitive results in case of extremely large or small out-
liers. Inspired by the above observation, this paper pro-
poses a novel approach using a mixed strategy to ag-
gregate consensus where extremely deviated outliers
exist. The concentrate region of a set of non-uniform
data is first computed such that the domain of aggre-
gation function is partitioned into sub-regions. The ag-
gregation will then operate dynamically with respect to
the corresponding sub-regions. In order to demonstrate
the working and efficacy of the proposed approach, the
illustrated examples are given in comparison to a num-
ber of alternative aggregation functions, with results
achieved by the proposed method being more intuitive
and of higher consensus.

The remainder of this article is organized as follows.
In Section 2, the background preliminaries including
definition of aggregation function and the methods that
have been previously reviewed and later utilised for ex-
perimental comparison are introduced. The novel ag-
gregation approach for data with outliers are intro-
duced in Section 3. This is followed by illustrative
examples in comparison to several popular state-of-
the-arts in Section 4. The comparison with alternative
methods is introduced in Section 5. Section 6 provides
the conclusion of the paper with future work.

2. Preliminaries

In order to demonstrate the proposed approach bet-
ter, preliminary background is given in this section,
which reviews the basic definition of aggregation func-
tion as well as a number of related works in dealing
with outliers.

2.1. Aggregation Function

The aggregation functions that take real arguments
from a closed interval [a, b] C R such as [0, 1] and pro-
duce a real value in [0, 1] are commonly used in prac-
tices. The real values in closed interval [a, b] and some
other types of arguments can be easily transformed to
the real values in unit interval. In this article, we con-
ventionally consider the aggregation functions that ag-
gregate the arguments of values taken from the unit in-
terval, which is represented as I for simplicity.

Definition 1 (Aggregation function) An aggrega-
tion function is a function of n > 1 arguments that
maps the (n-dimensional) cube onto an interval 1 =
[0,1], f : I™ — 1, with the properties:

l. f(a,a,...,a)=aand f(bb,...,b) =0
—_——— —_————

n—times n—times
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Table 1

Criminal suspect possibilities given by witnesses

Wi Wo Wi Wa Ws

We

Wr Ws Wy Wiy Average

Peter 0.7 0.6 07 06 0.7

0.6

05 01 005 005 046

2. x <yimplies f(x) < f(y) forallx,y €1

where a,b € [0, 1] are two constants.

The formal definitions of the common aggregations
could be found below, which have been proposed for
generic decision aggregations, but may not fit for sce-
narios where extreme outliers exist.

Definition 2 [4] (Averaging aggregation). An ag-
gregation function f is averaging if for every X it is
bounded by min(X) < f(X) < max(X), where X is a
vectorand X = {x1,x9,...,2,}.

Definition 3 [4] (Conjunctive aggregation). An ag-
gregation function f has conjunctive behaviour (or is
conjunctive) if for every X it is bounded by f(X) <
min(X) = min(xy,x9, -+, Ty).

Definition 4 [4] (Disjunctive aggregation). An ag-
gregation function [ has disjunctive behaviour (or is
disjunctive) if for every X it is bounded by f(X) >
maz(X) = max(xy, T, -, Tn).

2.2. Robust Estimators of Location

REL delivers values representative of the majority
of the data when a specified proportion of data seen
as potential outliers is removed [12,27]. In the fol-
lowing, the brief descriptions about the methods in-
cluding in REL are given. Firstly, the values are or-
dered, such as X = {xpy), 72, ..., %[}, Where zp;
denotes the ith smallest value. Secondly, the averages
for the shortest contiguous sub-samples of X contain-
ing at least half of the values are calculated. The can-

didate sub-samples are the sets X, = {z[;) : j €
{k.k+1,...k+ |2}k = 1,2,..., le The
length of each set is taken as || X || = |x[k+ 12 ]) anl

and thus the index of the shortest sub-sample is
k* = argmin||X;|, i =1,2,..., L”T'HJ

The Shorth is the arithmetic mean of X+ and given by
Short(X) = + Zx“ z; € X, h=[2|+1

The LMS est1mat0r is the midpoint of Xy . For each
h
sub-sample, the mean is computed T = 7 > x; and

i=1

the corresponding sum of squares is computed SQy =

1 h

’ > (zi — Z)?, where x; € Xy, h= [ 2]+ 1, k =
i=1

1,2,..., |21 ]. The LTS solution corresponds to the

mean Z; with the smallest associated sum of squares

SQ;.
. . _ n+1
j= argmklnSQk, k=1,2,..., L7J
— Zy|, where x; € Xp, h =

1 h
ﬁ E i

Lﬂj—&—l k=1 ,L”—‘HJ As, argminSQk:
arg mln Sk [27], the Least Trimmed Absolute (LTA)

dev1at10ns estimator is the mean Z; with the smallest
associated sum of ;.

Let S

2.3. Density Based Means

DBM is a weighted arithmetic mean and the weights
depend on the density of the data [2,5]. The weights
of inputs that are closer to the main group of data are
higher than the weights of those far away. Let d;; de-
note the distance between inputs z; and x;, the density
based mean is defined as follows.

Definition 5 [5] The density based mean is the
mapping:

DBM(X) = an w; (X)x;

=1

where
Kcﬁ%}%d%)
=

wiz)
.él u(®) kz; Kol .él 2

dij = |x; — x;| and Kc is the Cauchy kernel given by
Ko(t) =1+~

U)Z<X) =

2.4. Power Average Aggregation Function

Yager [34] introduced a non linear weighted-average
aggregation function, which is called Power Average
(PA) aggregation function and can be defined as fol-
lows

M=

(1 +T(z4))z

M:ﬂ

PA(X)

(1+T(z;))

1

.
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n
where T'(x;) = Y. Sup(z;,x;) and Sup(z;, ;)
J=Lg#i
denotes the support for x; from x;, which satisfies the
following three properties.

1. Sup(z;,x;) € [0,1]
3. Sup(zs, ;) = Sup(w, y), if [z; — x| < |z —y|

Obviously, the support (i.e., Sup) measure is es-
sentially a similarity index. The more the similarity,
the closer the two values are, and the more they sup-
port each other. In this article, Sup(z;,z;) = 1 —

|1‘i —$Cj|,i 75]
2.5. Discrete Choquet Integral

Choquet Integral (Ch) is a powerful aggregation
function especially in merging finite real inputs. Ch fo-
cus on capturing the interrelationship among the inputs
by adopting strategies to generate the weights of the
inputs.The standard Choquet Integral formulas can not
accommodate inputs which exist in continuum. So the
Discrete Choquet integral based on fuzzy measure m
is proposed [15]. The characteristics of inputs can then
be captured by the fuzzy measure, which makes it able
to work with outliers. The Discrete Choquet integral is
defined as follows

Ch(z) = ZI@:) o (m({(9), ... (n)}) —m ({(E+1),...,(n)}))

=1
where m is a monotone set-function satisfying two
boundary conditions m (#) = 0 and m({1,2, ...,n}) = 1.

2.6. Bonferroni Mean

Bonferroni Mean (BM) assumes homogeneous re-
lation among the inputs, i.e., each data x; is re-
lated to the rest of the inputs X\ {xz;}, where X =
{z1,22,...,x,} denotes the inputs. BM focuses di-
rectly on aggregated arguments to capture the inter-
relationships among them [24]. The degree of in-
terrelationships in between input arguments is mea-
sured on the basis of their magnitudes. That is, the
interrelationship of input arguments that come with
small values tend to be high with respect to those
with large values, but low with respect to those
also with smaller values. BM is defined as follows

p+q

, I 1
BM?%(ay,as, ..., an) = EZ:Uf — Z zf
=1 Jj=1
i#]
where p and g are the parameter and p + ¢ > 0. Here
qg=p=1

2.7. Heronian Mean

Heronian Mean (HM)[10] is a function that can re-
flect the interrelationship of the input arguments and is
defined as follows:

HM(X) = =2 33 v

i=1 j=i

3. Mixed Aggregation Functions Decreasing
Effects of Outliers

Despite most of the consensus lies in the so-called
Concentrate Region (CR), the information coming
from the minority outliers, i.e., the extremely large or
small values, should not be simply ignored. In order
to tackle this challenge, this paper proposes to utilise
a mixed strategy so that appropriate aggregation func-
tions may operate on argument values if they fall into
the corresponding sub-regions. In particular, the argu-
ments may be aggregated with averaging function such
as arithmetic mean if they fall into the region of CR.
Whereas in case of the aggregation for outliers, the
key idea is to make the aggregated results as close as
those located in the CR, in an attempt to avoid counter-
intuitive aggregation behaviour overall.

3.1. Algorithm Searching CR for Non-Uniform Data

In order to perform different aggregation strategies
depending on the characteristics of the data that may
fall into different sub-regions within the universe, it
is of significant importance that a method is devised
such that it is able to detect the consensus outliers effi-
ciently without human intervention. Instead of assum-
ing any priori distribution of the underlying data which
is not always available [16], nor involving high compu-
tational calculation by fitting the data into some exist-
ing models [18,13], the set of argument values are con-
sidered as one-dimensional data, and the sub-region
that contains fewer arguments will be iteratively com-
bined into the Concentrate Region if it is closer to the
existing Concentrate Region than the data subsets con-
taining large or small values.

Let X = {z1,x2,...,z,} denote the non-uniform
data to be aggregated, the average of X be z, and the
ordered data represented as X = {x[l], T[2]s -+ Tfn] 1,
where z(; is the ith smallest value, with x;; =
min{X} and z[,) = maxz{X}.If y ¢ X, the distance
between y and X can be defined as follows:

d(y,X) = min d(y, ;)
x; €X
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where d(y,x;) = |y — x;| for computational effi-
ciency.

Three subsets are then initialized as S,in = {17},
Sconcent’r‘ated = {i‘};sma;c = {x[n]} For the re-

maining argument values of X, each z[; is added to
the subset, based on the distance between T[] and
Sinin, Sconcentrateds Smaz calculated as mindistance
= mkin{d(az[i],sk)}, where k € {min, concentrated,

maa}. If the distance between Sy, and Seoncentrated
or Sz and Seoncentrated are close enough, then they
should be combined. The CR is computed according to
S = Seconcentrated — 1T}, CR = [ min(S), maz(S)].
The search algorithm for the acquisition of the CR is
demonstrated below in details.

Step 1 Initialize Syin = {211}, Sconcentrated = {Z}
. Sm(m = {x[n]}, and ¢ = 2;

Step 2 Compute the distances between ;) and Snin,
Sconcentrateds Smaz»> respectively, which is pre-
sented as d(x[i], Smin), d(xm , Sconcentrated) and
d(x[z]a Sma:r);

Step 3 Assign x[; to the set with minimal distance
such that wp; € Sy, given that d(z(;, Sk,) =
mkin{d(x[i] ,Sk) }.ko, k € {min, concentrated,

maz}, distance[j] = d (), k)7 = J +
L
Step 4 Update i = i + 1, if i < n, go to Step 2, other-
wise go to Step 5;
Step 5 Let maxdis = max{distance[j]}, if
J

|max{smin} - min{SconcentratedH < mazxdis,
Smin and Sconcentrated are combined with
Sconcentrated = szn U Sconcentrated- Simi-
lar]y’ lf |max{Sconcentrated} - mln{Smaa:}‘ S
maxdis, Sconcentrated and Sy,q, are combined
Wlth Sconcentrated - Sconcentrated U Smaa:- Fl'
nal]}” S = Sconcentrated - {j} and CR =
[min(S), max(S)].

Example 1 Ler X = {0.1,0.2,0.2,0.6, 0.6, 0.6, 0.6,
0.7,0.7,0.8,0.97,0.98} be the arguments to be aggre-
gated.

Step 1, szn = {01}7 Sconcentrated = {05875} ’
Smaz = {0.98},7 = 2.

Step 2, d(027 Smin) = 0.1, d(027 Sconcentrated) =
0.3875 and d(0.2, Syaz) = 0.78.

Step 3, d(0.2,Spin) = 0.1 is the minimum, 0.2
is added to Syin, Smin = {0.1,0.2}, distance[j] =
0.1,7=5+1.

Step 4, 1 = 3 < 12, go to step 2.

Repeat steps 2, 3, 4 until i = 4, x; = 0.6, go to step
2.

u a b v ) a b v u a b

(a) (b) (c)

Fig. 1. Figure caption.

Step 2, d(067 szn) = 0.4, d(067 Sconcentrated) =
0.0125 and d(0.6, Spae) = 0.38, where Spin =
{0.1,0.2,0.2} and Sconcentrated, Smaz are not changed.

Step 3, d(0.6, Sconcentrated) = 0.0125 is the min-
imum, 0.6 is added to Sconcent'r‘ated; Sconcentrated =
{0.5875, 0.6}, distance[j] = 0.0125, = j + L.

Step 4, 1 =5 < 12, go to step 2.

Repeat steps 2, 3, 4 untili = 12, go to step 5.

Step 5, maxdis = max{0.1,0,0.0125,0,0,0,0.1,
0,0.1,0.01} = 0.1, max{Smin} = maxz{0.1,0.2,0.2}
= 0.2,min{Smaz } = min{0.97,0.98} = 0.97,
max{Sconcentrated} = max{0.5875,0.6,0.6,0.6,0.6,
0.7,0.7,0.8} = 0.8, min{Sconcentrateda} = mMin{0.5875,
0.6,0.6,0.6,0.6,0.7,0.7, 0.8} = 0.5875.

As |min{Sconcentrated} - max{S7rLin}| > maxdis
and |max{Sconcentrated } — Min{Smaz }| > mazxdis,
the Concentrate Region is CR = [0.6,0.8].

3.2. Analysing And Classifying Partitioned
Sub-Regions of Domains

Based on relative positions between CR and the
range of data, there are generally three cases as shown
in Fig.1, where [a,b] is CR, and [u, v] is the range of
data.

In particular, points of CR do not overlap with points
of the range of data in Fig.1(a). Whereas, point a of CR
overlaps with the point u in Fig.1(b), and point b of CR
overlaps with point v in Fig.1(c). As a result, the parti-
tion of the domain may be classified into four cases in
the bivariate situation as show in Fig.2, where the axis
represents two attributes whose values are combined
into a single number.

In particular, case one presented as 1 in Fig.2 is
when both values are smaller than CR. Similarly, the
second and third cases are when both values are within
the range of CR or greater than above CR as shown in
2 and 3 of Fig.2, respectively. In the event of one value
is within with the other does not, this is represented
as 4-1 in Fig.2. Whereas when one value is above CR
and the other is below CR, it is presented as 4-2 in
Fig.2. The average of two values cannot be very large
or small and may be a value located within CR in the
cases 4-1 and 4-2. Therefore, these two cases can be
combined into one and it is case 4. In Fig.2, the other



6 Hengshan et al. / Mixed Aggregation Functions for Outliers Detection

Fig. 2. Classifications for partition of domains

sub-graphs can be considered as the special ones of the
sub-graph in Fig.2 (a).

3.3. Bivariate Mixed Aggregation Functions
Decreasing Effects of Outliers

The behaviours of mixed aggregation functions de-
pend on the inputs, these functions exhibit conjunctive,
disjunctive or averaging behaviours on different parts
of the domains and there are many different families
[4]. Averaging is the most common method to combine
information into a single numerical value. The basic
rule is that the total score cannot be above or below
any of the inputs. The aggregated value is seen as some
sort of representative value of all the inputs.

Conjunctive aggregation functions do not allow for
compensation: low scores for some criteria cannot be
compensated by other scores. The final aggregated re-
sult is the smallest value of any of the inputs that
bounds the output value. Comparing with conjunctive
aggregation functions, disjunctive aggregation func-
tions are the opposite.

The most popular mixed aggregation functions, uni-
norms [37] and nullnorms [7], are related to triangular
norms and conorms [1]. Uninorms make conjunctive
operator when dealing with low input values (these be-
low a given value e), and have a disjunctive operator
for high values (these above e) and are averaging for
otherwise [4]. Nullnorms are contrary [4]. The char-
acteristics of MADEs (Mixed Aggregation Functions
Decreasing Effects of Outliers) were constructed ac-
cording to Nullnorms.

Without loss of generality, once the partition of do-
main of the aggregation function done based on the
sub-graph shown in Fig. 2 (a), this section discusses
the proposed bivariate MADEs. To make the descrip-
tions simpler, let CRs of the aggregated values be the

Averaging | Averaging |Conjunctive

Averaging | Averaging | Averaging

Disjunctive | Averaging | Averaging

a

Fig. 3. Behaviors of bivariate MADEs

same in the following definitions, with the behaviours
of bivariate MADEs shown in Fig.3.

Definition 6 Let x and y denote the values to be ag-
gregated, [a,b] C [0,1] be concentrate region (CR)
for x and y. The bivariate MADEs is a mapping,
DE : [0,1]* — [0, 1] defined as:

Conjunctive min(x,y) > b
DE(z,y) =  Disjunctive max(x,y) <a (1)
Averaging otherwise

where Conjunctive, Disjunctive, Averaging satisfy the
following conditions:

lim Disjunctive(x,y) = lim Averaging(x,y)
r—a,y—a X—a,y—a

lim Conjunctive(x,y) = lim Averaging(x,y)
r—b,y—b x—b,y—b

In this paper, the Conjunctive and Disjunctive func-
tions satisfying the above conditions are denoted as
MC(z,y) and MD(z,y), respectively. The averaging
function usually means arithmetic or geometric mean.

It is then necessary to discuss how to obtain a con-
crete MADE. Two special classes of conjunctive and
disjunctive aggregation functions are the triangular
norms and conorms. Hamacher t-norms and t-conorms
[4] are the most popular continuous Archimedean t-
norm and t-conorm [25] in many practices, with well-
known Algebraic and Einstein t-conorms and t-norms
as the special cases [28]. For simplicity, Hamacher t-
norms and t-conorms were adopted as the special in-
stances in this article, the following Conjunctive and
Disjunctive functions are introduced to construct the
bivariate MADEs.

Proposition 1 Based on the Hamacher t-norms and
t-conorms, for a,b € (0,1), the following can be con-
structed: by (1)
I)LetMD,IY{(x,y): 1_?1_7);% a
0,z,y € [0,a], MDI;I is monotonously increased about
~ and has the following property.

lim MD,Iy{(x,y): lim

T—a,y—a r—a,y—a

Y >

Averaging(x,y)
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(x=b)(y=b)
T-b

2) Let MCE (x,y) = G—b)—b)
a-nz )
b,y > 0,x,y € [b,1], MC$ is monotonously decreased
about v and has the following property.
lim MCH(z,y) =

z—b,y—b

-G+ 5= -

lim Averaging(x,y)
b,y—b

Xty

where Averaging(x,y) = 3

Based on this proposition, the simple strategy to
choose the appropriate functions to construct the
MADE can be described as follows. That is, if the ef-
fects of extremely small outliers on aggregating result
are more significant than the ones with extremely large
outliers, for instance, the number of small outliers may
be greater than the one with larger outliers or there
are no large outliers, then the larger values should be
chosen for v. Otherwise, the smaller values should be
chosen for . Usually, the averaging aggregation func-
tion adopted here is the arithmetic mean. A simplistic
example is given below to explain how the bivariate
MADE:s is constructed.

Example 2 Let [a,b] C [0,1] be CR of x and y.
For MD,IY{(x,y) and MCE(%y), if v = 200, a useful
bivariate MADE (named as bivariate En-MADE) is as
follows:
(z=b)(y=b)
a-n

(@=b) , (y=b) (=5
(1-0) " (1-0) (1—b)
min(z,y) > b

+b

200—199( ;b))

En_DE(z,y) = - 2)
c+y+198(2L)
1+199(ZF)

a

zt+y
2

max(z,y) < a

otherwise

3.4. Multivariate Mixed Aggregation Functions
Decreasing Effects of Outliers

Let the aggregated values be a vector X = (z1, 2o, ...

and [a, b] C [0,1] be CR of z;(1 < ¢ < n). The multi-
variate MADEs are extended based on previously de-
fined bivariate MADEs, with a set of notations first
introduced as below.

1. Let symbolic (¢) represent the index of the ith
largest value and [¢] denote the index of the ith
smallest value for X = (21, zg, ..., Zy,).

xi means z; < a (0 < ¢ < nq) and n, is the

number of values satisfying x; < a.

xl represents ¢ < z; < b (0 < i < ngy) and ngy

is the number of those values.

ol shows z; > b (0 < i < n3) and ng denotes

the number of values satisfying z; > b. In addi-

tion, n1 + no + n3z = n.

+

Definition 7 Ler X = {1, %9, ...,2,} denote the
vector of values to be aggregated and [a,b] C [0,1](1 <
i < n)be CR of ;(1 < i < n). An Extended Multi-
variate Disjunctive (EMD) function is a mapping:
EMD : [0,1]" — [0,1]. Foranyi (2 <i<mn)

EMD(Xi) =MD (EMD(I‘h T2y CCl'_l), £El) (3)
where X; = (x1,22,...,%;).

Definition 8 Let X = {1, 22,...,2,} denote the
vector of values to be aggregated and [a,b] C [0,1](1 <
i < n)be CR of ;(1 < i < n). An Extended Multi-
variate Conjunctive (EMC) function is a mapping:
EMC : [0,1]" — [0,1]. Foranyi (2 <1i<n)

EMC(Xl) =MC (EMC(.’Eh L2yeeny "Eifl), .’El) (4)
where X; = (x1,22,...,%;).

Definition 9 Let X = {x1,22,...,2,} denote the
vector of values to be aggregated and [a,b] C [0,1](1 <
i < n) be CR of ;(1 < i < n). The Multivariate
MADE is a mapping: MADE : [0,1]™ — [0, 1].

MADE(X) = M(EMD(xy), ilgz): » ’xfnl)z;m
Averag;ng(ﬂfb(l),x(g),,;" 1 Zing))s (5)
EMC(%[l], fB[g]y e ax[ng]))

In the aforementioned definition, M may be any ag-
gregation functions. However, the main contribution of
the proposed MADE:s is to decrease the possible side
effects of outliers that are located outside of CR. As
a result, M is the weighted arithmetic mean and the
weights are defined as the proportions of outliers and
the normal argument values are defined as:

n
MADE(X) = — x EMD(x(1), (),  Z(y))
n .
+2 x Averaging(z(1y, T(2), s T(ny)) (6)
3
+; X EMC(xﬁ],foQ], s ,$[h,;743])

where n41,n9,n3 are numbers of the small outlier
values, the values located in CR, and the large out-
lier values, respectively, n; + ng +ng = n. f W =
{wi,wa,...,wy} (w; € [0,1]) is the weight vector
corresponding to X = {x1, 2, ..., z,}, the weighted
aggregation functions for multivariate MADEs are pre-
sented as follows

MADE(X) = zlj w%i) x EMD(x!

1 L. l
=1 1% % (ny)
i) T E) ot W) ) ()
2 h EMC(zh h ... gh )
T2, P X EMCE e Ty

where w(;, w(}), wfy are the weights corresponding to
xl( i) x’(?), xﬁ], respectively. The constructed mixed ag-
gregation function has the following properties.
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Definition 10 Ler D = [0, 1]™ be the definition do-
main of MADE(X), for any X = {x1,x2,....,2,},
Y ={y1,y2, .-, Yn} € D, the distance is defined as

1

n 2
d(X,Y) = (Z (i — yi)2>
i=1
Definition 11 Function f(x) is defined on D =
[0,1]", forany X € D,Ve > 0,30 >0, ifd(X,Y) <
0, then | f(z) — f(y)| < &, we define f{x) is continuous
ar x.

Proposition 2 MADE(x) is the continuous function
about .

Proposition 3 Let X, Y € D = [0,1]", if
— t t m m h h
X = {x(l),...,x(nl),x(l),...,a:(w),a:(l), ...,x(ng)},

_ t t m m h h
Y = {y(l)a Yy Yy o Ying) Yy -~-ay(n3)}:
and X <Y means {x; <y;|i € {1,2,...,n}}, then
MADE(X) < MADE(Y).

Example 3 Let X = {x1,29,...,2,}, [a,b] C
[0,1)(1 < i < mn)be CRof z;(1 < i <mn),andy =
i 4 x; + 1987505

200. We denote MDI(z;,z;) = o as

14199757

ES(z;,z;), and denote
(w;=b)(z;—b)
a-n

Mcg)o(wif z;) =

(x;—b) (z
200 —199(° G5y + "@=py ~ =52
vas ET(x;, x;), averaging function is arithmetic mean.
Then a special multivariate MADE can be obtained
and it is as follows.
MADEps o pr(X) = “LEMDgs(z!,,, ol
A, " 1) %(2)

LA N R
—i—EX( 1) (2)
n

’xl(nl))
+ 7
(n3) ) (8)
n2

ns
+—EMCrr(afy), oy, 1 2,))

One of the biggest advantages of using the proposed
searching algorithm lies in the avoidance of manu-
ally adjusting associated parameters, which could have
made the algorithm sensitive to human errors. For the
given one-dimensional data, the distribution of data by
searching algorithm is unique, that is, the distribution
of data is uniform or the outliers can be found. When
aggregating one-dimensional data, the Extended Con-
junction function will be used for outliers with larger
values. In particular, such function will result in an ag-
gregation, which is less than min {X;|i =1,2,...,n}
and is more than values lying in the concentrate re-
gion, thereby reducing the impact of outliers with
high values. Conversely, the application of the ex-
tended disjunctive function to outliers with low val-

z;—b) (z,ifb)(a:jfb))+

ues will lead to an aggregated result greater than
max {X;|i =1,2,...,n} and smaller than any value
in the concentrate region.

3.5. Consensus Measure for Aggregating Arguments
with Outliers

Let X € [0,1]" be the input vector and y be the
output value. In the case where y is known, the con-
structor F aims to approach y such that F' (X) =~ .
In the case where y cannot be obtained in advance,
or simply not available, the consensus measure may
be utilised to check whether the final result obtained
by the aggregation function is consistent with the ma-
jority of inputs. For instance, the consensus degree
of the preference value may be measured by [29] as

CD(vg) = 1= 3 ¥ |oi) — vl
k=1

%‘) Vi
gument to be aggregated and m denotes the number of
experts. Generally speaking, the higher the value, the
higher consensus degree it signifies. It is worth noting
that the use of consensus measure to gauge the perfor-
mance of an aggregation function has commonly been
adopted in recent literature [17].

In group decision making (GDM), the arithmetic
mean of the data located in the concentrate region CR
is the value that reflects the closest opinion to the uni-
versal one. In order to avoid the overall aggregated re-
sult significantly affected by outlier values, it is impor-
tant for the aggregated results of outliers to approxi-
mate the CR mean. A consensus measure is therefore
proposed for the final aggregation of argument values
with outliers.

Fuzzy implication [23,3] is a function which is
monotone non-increasing in the first argument, mono-
tone non-decreasing in the second argument, and satis-
fies the boundary conditions, I(0,0) = 1,1(1,1) =1
and I(1,0) = 0. In this study, the Lukasiewicz im-
plication (I, (x,y) = min(1,1 — z + y)) is used to
construct the consensus measure.

, Where v;; is ar-

Definition 12 Ler X = {1, 22, ...,y } denote the
argument vector to be aggregated and y denote the
aggregated result and CR of x; be [a;,b;](1 < i <
n). Consensus measure for y and X (Presented as
CRI(X,y)) is defined as:

1 n

- (min(l, 1 — (zi — Tmia) + (y — Tcr))
it ©
—|—min(1, 1+ (% — mia) — (y — i"CR)) — 1>
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. L 1 2
where ;4 is the midpoint of X, Tcp = — Y T, Nc
e j=1
is the number of value x;, and x; € [a;, b;].

For the above definition, |y — Z¢ | shows the differ-
ence between the aggregated result and the arithmetic
mean of the data located in CR. The mid point of X
essentially discards the outliers with very high and low
values, |x; — Zmia| (1 < i < n) reflects the devia-
tion for x; and x,,;4, these values are larger for out-
liers and lower for the normal values. Therefore, the
value |x; — Zmial (1 < i < n) can approximately
show the consensus degree of x;. Lukasiewicz impli-
cations min (1,1 — (#; — Zmia) + (y — Tcr)) and
min (1, 1+ (2; — Tmia) — (y—ZTcr)) compute the con-
sensuses between y — To g and x; — Tpmiq (1 < i < n).
In the following, some essential properties for the pro-
posed consensus measure are presented.

1. For X = {a,aq,...,a},a € [0,1], it holds that
CRI(X,a) = 1.

2. For the special case, X = {0,0,...,0} and y =
1, it holds that CRI(X, y) = 0.

3. Let 7(¢) denote all permutations on {1,...,n}
and X € [0, 1]", itholds that CRI(x1, z2, . .., Zy)
CRI(T (1), Tr(2); - - -, Tr(n)). Consensus mea-
sure CRI is symmetric.

The formula min (1,1 —(2; — Zmia) + (y—Zcr)) +
min(1,1 + (2; — Zmia) — (y — Zcr)) — 1 in defi-
nition 12 can measure the consensus degree for each
x;(1 <4 < n) and the aggregating result, this consen-
sus measure is very useful for the data analysis as CRI
discards more details in it. More formally, the gener-
alised definition of the consensus measure is as fol-
lows.

Definition 13 Let X = {z1,x9,...,x,} be in-
puts, y denote aggregating result, and CR of x; be
[a;, b;](1 < i < n). The consensus measure for each
Element and the aggregated result (CER) is defined as
follows:

min (17 1- (xi - xmzd) + (y - ijR)) + min (1a 1+
(xi - -Tmid) - (y - i'CR)) -1
where T.,;q and T o g are same as the ones in definition

12.

According to this definition, CRI is the average of
CERs.

4. Tllustrative Example

In this subsection, the application is introduced to
demonstrate the procedures where MADESs are used to
aggregate multiple values and are compared with other
methods, such as, Least Squares Trimmed estimator
(LTS)[27], Density Based Means (DBM) [2], Power
Average aggregation functions (PA) [35], Discret Cho-
quet Integral (Ch) [15], Bonferroni Mean (BM) [24],
Heronian Mean(HM)[10] and so on.

The example is on the background of job shop
scheduling, where the executive board consisting of a
number of experts votes for a certain plan. As itis not a
good practice to simply discard or give lowers weights
to any one, their votes are usually equally treated.

Example 4 In an application, the possible plan was
produced by using Advanced Planning System (APS)
for Flexible Job Shop Scheduling Problem (FJSSP),
panel experts will express their degrees of opinions on
how much they favour a particular plan, with a exam-
ple of such probably table given in Table 2. First of
all, the concentrate region CR for the set of arguments
can be computed resulting in the interval [0.6,0.8].
Let v = 200, EMD and EMC are constructed by us-

ing MDﬁI and MCf in proposition 1, and the weight

1
of each expert being ITh The computing process of
MADE is as follows.

MADE(X) = % X (0.84 0.6 + 0.7+ 0.6 + 0.7 + 0.6+
2

0.6) + % x EMD(0.1,0.2,0.2) + 55 x EMC(0.97,0.98)

= 0.65714 x 0.58333 + 0.59971 x 0.25 + 0.83839x

0.16667 = 0.67299

In comparison to SM, DBM, TM, Mid, PA, LTS,
Ch, BM, HM with aggregated results shown in Ta-
ble 3, it can be observed that MADE computed re-
sult (0.67299) is very close to SM (0.65714) than the
others computed ones. The CER for each possibil-
ity is depicted in Fig.4 in comparison to MADE with
T™, DBM, Ch, BM, HM and PA. Although Mid and
LTS have higher CRIs than TM as shown in Table
3, they discard too much data including those seen
as non-outliers, the comparing results for them with
MADE are shown in Fig.5. It can be observed that,
for all possibilities, CERs for SM and MADE are very
close to each other. Possibilities p;(1 < ¢ < 7) are
in CR (]0.6,0.8]), CERs for DBM, PA, Ch, HM and
TM are less than the ones for MADE. There are same

results on possibilities p;(i = 11,12), but the re-
sults are contrary, for p;(i = 8,9,10). Possibilities
pi(i = 8,9,10) have smaller values and are not in

CR, the differences between them and SM are larger.
MADE computed results are very close to SM and far
from p; (i = 8,9,10). CERs between p;(i = 8,9, 10)
and MADE computed result are lower. DBM, PA, HM
and Ch computed results are smaller and far from SM,
but MADE computed result is large and very close to
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Experts given possibilities on possible plan

E1 EQ E3 E4 E5

Er Es Ey9 FEio FEu  Er

Possibility 0.8 0.6 0.7 06 0.7

06 06 0.1

02 02 097 098

Aggregated results and CRIs

SM DBM

MADE TM Mid

PA LTS Ch BM HM

results  0.65714  0.59521

0.67299 0.58750  0.60000  0.60327

0.69625 0.58750 0.64880 0.54744

CRI 0.79583  0.76487 0.79319 0.76101 0.76726  0.76890 0.78932 0.76101 0.79166  0.74098
A AL MADE are less than the ones for Mid, but are greater
’ AN than the ones for LTS. For large values (p;,¢ = 11,12)

0.90 4
0.85
0.80
0.754

0704 4

CER

0.65
0.60
0.55

0.50 4

T T T T
1 2 3 4 5 6 7 8 9 10 " 12

Serial Number of Data

Fig. 4. Comparing results of CERs for MADE with DBM, PA, Ch,
BM, HM and TM to possibilities on possible plan

1.00
0.95
0.90
0.85 [/
0.80 [£
/
075 [
0.70

CER

0.65
0.60
0.55
0.50

045
040 L. L L L L L L L L L L
1 3

Serial Numbers of Data

Fig. 5. Comparing results of CERs for MADE with Mid, ITS and
TM to possibilities on possible plan

SM. Possibilities p; (¢ = 11, 12) have larger values and
are not in CR, CERs for MADE are higher. Together,
it can be concluded that CRI of MADE is closer to
the one of SM and is higher than the others (Table 3).
Although the partial result of MADE is similar to the
BM, the CRI of MADE is closer to the one of SM than
BM.

In Fig. 5, it can be observed that, for possibilities
(pi, 1 < ¢ < 7) which are in CR, CERs for Mid are
lower than the ones for MADE. CERs for LTS are
lower than the ones for MADE for ps, p4, pg, p7, but
contrary for p1, ps, ps. Possibilities (p;,7 = 8,9,10)
have smaller values and are not in CR, CERs for

that are not in CR, CERs for MADE are greater than
the ones for Mid, but less than the CERs for LTS. CERs
for 58.33% of possibilities and MADE computed re-
sult are higher than ones for these possibilities and LTS
obtained result.

In general, CRI for MADE is higher than CRIs for
Mid and LTS. The Mid discards most data except the
single midpoint, its performance is likely to affect be
outliers. The same problems exist for LTS. Based on
the discussions given above, it can be concluded that
MADE has higher consensus with inputs and it does
not discard any input maximally utilising all available
information. DBM, PA, Ch, HM and BM do not ig-
nore any argument values, but their consensus degree
is lower than that of MADE. SM discards the outliers
and is regarded as the standard for comparison. Based
on MADE computed result (0.67299), it can be con-
cluded that the APS given plan can be accepted.

The MADE method can also be used in the group
decision-making.

Example 5 Harrisburg and Philadelphia are the fa-
mous cites of Pennsylvania in US and they are the al-

ternatives, denoted as A = {A1, As}. The used lin-
guistic term set is S = { sg = extremely impossible, s
= less impossible, so = slight impossible, s3 = equally
possible, sy = possible, s5 = highly possible, sg = ex-
tremely possible }. We invite 10 students to evaluate
the possibility of which city is the capital of Pennsyl-
vania, for instance, the opinion of the first student is
described as matrix E-. It can be translated into a nu-
merical matrix Ty utilizing the numerical scale model

pi = 3(1 + logi") [38], where a; = (\ﬁ)A_l(Si)fg,
A~Y(s;)=1, c=2 [39], and i is the index s;.

_ S350 _ 0.5 0.03
by = {56 53} and Ty = {0.97 0.5 ]

The possibility of Harrisburg as the capital of Pennsyl-
vania based on the students’ opinions can be presented
as {0.03,0.66,0.82,0.34,0.82,0.82,0.34, 0.66,0.97,
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0.66}, and {0.03,0.97} are the outliers, they cannot be
simply discarded.The aggregated result using MADE

is presented as matrix, R = 00'359 06651} . It can be ob-

tained that Harrisburg is the capital of Pennsylvania.

In terms of computation complexity for the pro-
posed method, it is attributed to the computation of its
two components. The first step of the proposed method
divides the input data into three sub regions based on
the distance between data and each sub region, result-
ing in the computation complexity of O(n?). The sec-
ond step aggregates values of the three sub regions, re-
sulting in the computation complexity of O(n). Over-
all, the complexity of MADE is therefore O(n?). Al-
though tradition averaging methods such as TM and
SM come with O(n), they generally cannot work
well to generate unbiased result with extreme outliers.
Whereas more advanced methods such as DBM, PA,
Ch, HM and BM also come with the complexity of
O(n?).

5. Comparison with Alternative Methods

In summary, integrating the aforementioned analy-
sis, the differences between different methods in this
study can be summarized as follows:

1. In Mid and LTS, a fairly large proportion of orig-
inal argument values may be removed, therefore
leading to the conclusion that are not the repre-
sentative, and their performance of both methods
are not stable as shown in Fig. 5 and 1.

2. The outliers which are far from the concentrate
area of the data have smaller weights in DBM
and PA. Although BM, HM and Ch methods con-
sider the distribution of input data, the overall ag-
gregated result is still not satisfactory as demon-
strated by whether Peter is the criminal. In case
where outliers are either extremely small or large
(instead of a mixture of both), results aggregated
by DBM, PA, HM and Ch may still be counter-
intuitive, which could be corrected using the pro-
posed MADEs as shown in Section 1.

3. The results aggregated by the proposed method
have achieved higher consensus than those of
T™, DBM, PA, Ch, HM and BM as demon-
strated in Table 3. Moreover, for each aggregated
value, MADEs has also achieved higher consen-
sus with the aggregated values that are in the CR,
and they have lower consensus with the values
that are not in CR as demonstrated in Fig.4 and
5.

6. Conclusion

In group decision making, extremely very large or
small values that are isolated from others may lead to
counter-intuitive aggregated result when data is sim-
ply aggregated by averaging. In order to tackle this
challenge, this paper proposes a novel approach with-
out discarding any exiting argument value. A search
algorithm is first proposed to search the concentrate
region for non-uniform data resulting in a number of
partitioned domains. Based on the partition of domain,
MADE:s are constructed and their basic properties are
studied. To measure the consensus of aggregated re-
sult and the inputs, CRI is proposed, which reflects
the consensus degree between aggregated result and
the set of all original argument values. Furthermore,
CER is proposed, which reflects the consensus degree
between the aggregated result and each individual in-
put. Based on computed CERs, more details on con-
sensus between aggregated result and inputs can be ob-
tained. The illustrative examples are given in compar-
ison to a number of alternative aggregation functions,
with the results achieved being more intuitive and of
higher consensus. Whilst promising results achieved,
it is proposed to put this approach into real-world ap-
plications such as those from the wisdom of crowds
[26]. In addition, the proposed method could be in-
corporated in conjunction with multi-attribute group
decision-making [11], multi-source information fusion
[20], fuzzy system construction [9,8].
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