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Abstract—One of the pivotal challenges presented to urban
road traffic controllers is the effective utilisation of transport
infrastructure, as a result of growing urbanisation, the finite
network capacity, and of the increasing number of road vehicles.
In this context, the arrival of connected vehicles present a unique
opportunity for a fundamental change in urban traffic control.
Urban traffic control approaches should then take an active role
in integrating connected vehicles into the mobility ecosystem in
order to maximise benefits.

To support such integration, in this work we propose to
leverage automated planning, a well-studied branch of artificial
intelligence, to perform real-time traffic routing in urban areas.
We describe the proposed approach, and we demonstrate its
effectiveness using real-world historical data of a UK town.

Index Terms—Traffic Routing, Artificial Intelligence, Auto-
mated Planning, Urban Traffic Control

I. INTRODUCTION

Over half of the world’s population now lives in cities
and global urbanisation continues at a steady pace. In the
UK alone, the cost of congestion has reached nearly £8
billion in 2018 in lost time and fuel consumption,1 and has
become a major health threat that goes beyond the cardiac and
respiratory systems [1].

In this context, the arrival of connected vehicles present
an opportunity for a paradigm shift in urban traffic control.
Connected vehicles can communicate, via appropriate pro-
tocols, with the infrastructure and with other vehicles [2].
In this work we focus on how urban traffic control can
exploit the opportunities presented by the advent of connected
vehicles to distribute traffic, hence reducing congestion and air
quality issues while maximising the utilisation of the available
infrastructure, in a controlled urban region.

Considering the broader context of intelligent vehicle rout-
ing [3], we address the problem of real-time routing by lever-
aging automated planning techniques. Automated planning
is an extensively studied area of artificial intelligence (AI),
and provides off-the-shelf highly-performant solvers and a
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set of standard languages that are capable of dealing with
challenging problems from real-world applications. Notable
examples include drilling [4], smart grid [5], underwater
unmanned vehicles control [6], and mining [7].

In this work, we specify planning knowledge models using
the numerical planning formalism, that can support complex
reasoning with numbers and quantities at the network level,
having a global view of the situation, e.g., positions and
destinations of vehicles in the network, and expected paths,
and can thus take informed (globally motivated) decisions that
individual vehicles would not be able to take independently.
Further, we introduce an architecture that allows to exploit
planning for real-time traffic routing and that can lead to a
fully autonomous centralised urban traffic controller.

To demonstrate the effectiveness of the proposed approach
we test it, in simulation, on real-world traffic data of the Milton
Keynes centre area – one of the largest town of the United
Kingdom. The results indicate that the proposed approach is
capable of reducing congestion and improving the exploitation
of the available urban network by routing vehicles.

II. BACKGROUND AND RELATED WORK

This section gives the necessary backgrounds on automated
planning, and provides and overview of the work done in the
vehicle routing field, particularly from an AI perspective.

A. Automated Planning

Automated planning is the area of AI that focuses on
investigating approaches for generating plans, sequences of
actions, that need to be performed to achieve predefined goals
from a given initial state [8]. For producing plans and decisions
rationally using symbolic reasoning, it has to have explicit
knowledge of the environment and actions, a domain model,
and description of objects, an initial state of the environment
and goals, a problem instance. In numerical planning, The
environment is represented by first-term logic predicates and
numeric variables. Actions have preconditions, i.e., what has
to hold in the state of environment prior action application,
and effects, i.e., how the action application modifies the state
of the environment. Both domain models and corresponding
problem instances can be encoded in the PDDL language [9].
The combination of a domain model and a problem instance978-1-7281-8995-6/21/$31.00 ©2021 IEEE



is usually referred to as knowledge model, which incorporates
all the information needed by a domain-independent planning
engine to solve the described instance.

The development of domain-independent planners within
the AI Planning community, motivated by the International
Planning Competitions [10], has lead to a range of “off
the shelf” technology that can be used in a wide range
of applications: since they accept the domain and problem
description in a standardised interface language and return
plans using the same syntax, they can easily be leveraged as
embedded components within larger frameworks, as they can
be interchanged without modifying the rest of the system.

B. Traffic Routing

The problem of intelligent vehicle routing deals with find-
ing routes for vehicles in the road network such that each
vehicle has to reach its destination from its location of origin
while optimising for specified criteria such as mitigating road
congestion [3].

The standard approach, that is currently exploited in most
urban areas, is to leave to drivers the decisions about the
best route to follow. Drivers can decide to rely on satellite
navigators but most of the decisions are based on the drivers
experience and knowledge of the network.

Considering more intelligent approaches, the problem can
be tackled from a centralised perspective, i.e., there is a central
urban traffic controller having information about the routes of
vehicles, and about the network conditions. On this basis, the
controller can estimate how traffic flows will evolve in the
near future. Vehicle routes can be hence calculated by taking
into account such predictions, with the aim of maximising a
general level of service for the overall network [11].

Another approach to intelligent vehicle routing is to con-
sider decentralised approaches, where vehicles do not rely
on a centralised system to decide the route to follow (see,
for instance [12], [13]). In a decentralised approach, each
vehicle has to decide in isolation, based on the information
that it is able to collect on the network conditions and, in
the case of connected vehicles, about the intentions of nearby
vehicles. A decentralised approach is commonly exploited in
satellite navigation systems (e.g., WAZE2), which, however,
might lack of reliable information about the evolution of the
road network conditions, or require strong vehicle to vehicle
communication. Decentralised approaches are usually reactive,
they determine the most promising route for a single vehicle
taking into consideration the current state of the road network.
Such approaches scale well, however, they lack the global
perspective and might hence react, for instance, after some
roads become congested.

A recent comparative study has considered various op-
timisation metrics, both centralised and decentralised [14].
The results of the study indicate that the most promising
optimisation metric is road occupancy, i.e., the number of
vehicles that are currently on a given road.

2https://www.waze.com/
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Fig. 1. An overview of the proposed architecture.

Taking a different perspective, artificial intelligence ap-
proaches based on planning has been proposed to tackle the
intelligent vehicle routing problem by planning routes for a
group of vehicles globally, rather than separately for each
individual vehicle. Automated planning techniques can be used
to in a centralised fashion to generate a plan for multiple
vehicles. Preliminary works leveraging automated planning
techniques in such a fashion aim for minimising the risk of
road congestion [15] or satisfying air quality constraints [16].
The preliminary results presented in those works indicate that
using the “global” planning approach is promising (e.g. roads
might not become congested even in rush hours), although it
might not scale well with an increasing number of considered
vehicles and/or the size of the road network. We took inspira-
tion from the work of Chrpa et al. [15] in terms of leveraging
automated planning for intelligent vehicle routing. However,
the approach that we present in this paper can perform real-
time traffic routing, rather than the offline approach of Chrpa
et al. Further, we consider a different planning formalism,
namely numerical planning, that provides an excellent trade-
off between computational complexity and accuracy of the
knowledge models.

III. PROPOSED APPROACH

This section introduces the proposed architecture, and de-
scribes the knowledge model on which the approach relies.

A. Architecture

Figure 1 depicts the overall system architecture which has
been designed in order to leverage automated planning for real-
time vehicle routing in a urban area network. The planning
engine, that is in charge of generating the overall routing
plan for the vehicles approaching the controlled urban region,
receives input (the knowledge model) under the form of a
domain model and a problem file. The domain model describes
the way in which the engine can generate the routing plans,
and will be described in the next section. The problem file
describes an instance to be solved, and must include the
following information:



(:action drive-medium
:parameters (?c - car ?r - link ?r2 - link)
:precondition (and

(>= (occupancy ?r2) (medium-level ?r2))
(< (occupancy ?r2) (heavy-level ?r2))
(at ?c ?r)
(connected ?r ?r2)

)
:effect (and

(increase (occupancy ?r2) 1.0)
(not (at ?c ?r))
(at ?c ?r2)
(increase (total-cost) (cost-medium ?r2))
)

)

Fig. 2. The drive-to-medium action in the PDDL language.

• The topology of the considered urban area network, in
terms of links and legal traffic movements.

• The network condition: this is a “snapshot” of the state
of the network.

• Information about approaching vehicles, in terms of entry
point (initial position considered) and the destination to
be reached.

• A metric to be optimised; i.e., the way in which the
quality of the routing plan can be assessed and compared.

The goals (of a problem instance) are to have all the vehicles
at their final destination. Once a problem has been solved, the
generated routing plan is provided to the traffic simulator, that
updates the path for the affected vehicles, and continues the
simulation.

Please note that Figure 1 makes explicit reference to a
traffic simulator, since we use a simulator for performing the
experimental analysis of this work. However, in place of the
traffic simulator, data from available sensors can be collected
and enhanced (see for instance [17]) and provided as input to
the system, and generated routing plans can be communicated
to the vehicles via appropriate communication protocols.

B. Knowledge Model

We now present the engineered knowledge model that
describes the controlled urban region (e.g. road network, posi-
tions of vehicles), the condition of the network, and the actions
that the planning engine can use to route vehicles from their
entry points to their destination points. The model is based on
a micro-simulation model of road traffic [18], in other words, it
considers traffic flows at the level of individual vehicles since
routes are calculated for each vehicle individually.

In our encoding, the controlled region is represented as a
set of unidirectional links. On the basis of the topology of
the network to model, each link is characterised by its length,
occupancy, and by the fact that it is connected to a subsequent
link. Occupancy is specified in terms of vehicles (PCUs)
that are currently occupying the link, either in movement or
queuing. A link X is connected to a link Y if vehicles can
move from X to Y via a junction. It is worth noting that the
connected property is unidirectional so, for the sake of the

above example, vehicles from Y are not allowed to move to
X .

A link is also described in terms of its congestion levels. We
designed a three-level system, corresponding to a link conges-
tion being light, medium, or heavy. The level of congestion is
defined via threshold values, specified in terms of occupancy
of the link. Congestion levels play a pivotal role in our model,
as they specify the “cost” of navigating via a link. Navigating
via a link with a medium level of congestion costs more than
navigating via the same link when it is lightly congested,
and less than when it is heavily congested. Such costs are
specified for each link via dedicated cost-light / -medium /
-heavy predicates.

A vehicle is described by its position, via a dedicated
at predicate that specifies the link the vehicle is currently
navigating, and its destination.

Given the initial positions of the vehicles entering the
controlled urban region, their destination, and the current
network conditions, the planning engine has to find, for each
of the vehicles, the path that minimises the overall cost. The
process of navigating vehicles through the network is handled
by a drive- type of actions, that allows a vehicle to move
from a link to a connected one. There are three variants of
this action: drive-light, drive-medium, and drive-heavy. The
planning engine can select the appropriate one according to
the level of congestion of the receiving link. The PDDL code
of the move-medium action is shown in Figure 2. The action is
specified by the preconditions that have to be satisfied before
applying it. In particular, there are constraints on the current
level of occupancy, and on the position of the vehicle. The
effects of this action are that the vehicle is moved to the
connected link r2 (according to the topology of the network),
the occupancy of the connected link is increased by one PCU,
and the overall cost of the plan is increased by the cost-
medium value of the link. It is easy to notice that the action
is not reducing the level of occupancy of the link r, but only
increasing the occupancy of r2. This is because the numerical
planning formalism has no notion of time, so by always
increasing the occupancy our approach is forcing the planning
engine to explore different routes in order to distribute traffic
and minimise the overall costs.

As it is apparent, the knowledge model gives the planning
engine an abstraction of the network and of the components
that are part of a routing plan. For instance, it does not
take into account traffic lights, the time needed for crossing
junctions, etc. This has been done for the sake of reducing the
computational complexity, and allowing the system to produce
routing plans in a very limited amount of time.

A solution plan, which is the output provided by the
planning engine, is a sequence of drive- actions that move each
vehicle from its entry point to its destination, via a sequence of
links. This plan can be parsed, in order to identify the route of
each vehicles, that can then be provided to a traffic simulator
–or to the actual vehicles.



Fig. 3. The modelled central Milton Keynes urban area. During the simulated
period of time, main traffic flows are from North to South-East, and from West
to East. This is because large residential areas are located at North and West
of the modelled region.

IV. EXPERIMENTAL ANALYSIS

To investigate the empirical performance of the proposed
planning-based approach for routing connected vehicles in
urban areas under realistic traffic conditions, the network
of Milton Keynes centre has been used. In particular, here
we consider a SUMO microsimulation model [19], and the
network is shown in Figure 3. Milton Keynes is a town of
the United Kingdom, located about 80 kilometres north-west
of London. Milton Keynes has a population of approximately
230,000. The model covers an area of approximately 2.9
square kilometres, and includes more than 25 junctions and
more than 50 links.

The SUMO model simulates the morning rush hour, and
has been built by considering historical traffic data collected
between 8am and 9am on non-holiday weekdays. Data has
been provided by the Milton Keynes Council, and gathered
by sensors distributed in the region between December 2015
and December 2016. Traffic signal control information has
been provided by the Council. The model has been calibrated
and validated. During the morning rush hour, 1, 800 vehicles
are entering the controlled region, and the main traffic flows
are from North to South-East, and from West to East. This is
because large residential areas are located at North and West
of the modelled region

The framework presented in Figure 1 has been developed
in Python, and uses the TRaCI interface to interact with the
SUMO simulation environment, in order to get the current
network status, the vehicles entering the network, generate the
knowledge model, run the planning engine, parse the solution
plan, and inform vehicles of the generated assigned route.

For every couple of origin-destination, described by the
traffic flows of the model, traffic experts have identified reason-
able links to be considered for routing. They did not provide
complete paths, but only the set of links that they would

consider for distributing traffic for the considered origin-
destination couple. All the relevant links have been included
in the topology, provided as part of the knowledge model to
the planning engine.

For each link, congestion levels have been defined as
follows. Light congestion corresponds to occupancy being less
than 40% of link’s capacity; a heavily congested link has
occupancy above 70% of its capacity; medium level sits in
between. Current occupancy is provided by the SUMO simu-
lator. To provide the planning engine with a likely evolution of
the traffic conditions, vehicles that are already in the network
are considered as occupying 5 links at a time: the one they
currently are, and the next 4. While this value can be set by
the user, this specific value proved to work well for centralised
routing [14], and has been identified via a set of preliminary
tests. Further, it gives a rather pessimistic overview of the
traffic conditions, forcing the system to distribute vehicles as
much as possible.

The cost of navigating through a link is equal to the
length of the link for light, ×10 for medium, and ×100 for
heavy congestion. While these values are arbitrary, and can
be modified by the user, the rationale is to force the planning
engine to distribute traffic as much as possible, by making it
expensive to select links that are already congested.

The simulation is run for 1 hour and then stopped. The
presence of vehicles at entry links is checked every 5 seconds.
For each set of experiments, the simulation is run five times
and results are averaged, to account for non-determinism.

The well-known domain-independent planning engine LPG
has been used [20]. It has been selected due to its wide use in
real-world planning applications, and for its ability to quickly
generate solution of increasingly good quality – according to
the provided metric. The planning engine has been required
to generate at most 3 solutions, and has been given at most
10 CPU-time seconds and 6 GB of RAM to run.

For the sake of contextualising the performance achieved
by the proposed planning-based approach, we also report
the results obtained by the best performing centralised and
decentralised approaches introduced by Vallati and Chrpa and
tested using the same urban region [14]. We will use the
Occupancy (decentralised) and n5-Occupancy (centralised), as
defined by the authors. In the remainder of this section we will
refer to them as Decentralised and Centralised, for the sake of
readability.

A. Results

The simulation results are summarised in terms of the
following SUMO-calculated performance indices:

• number of departed (arrived) vehicles. Indicates the num-
ber of vehicles that entered the region (reached destina-
tion) during the simulation. A vehicle can enter the region
if the entry link has enough space to accommodate it,
otherwise it is assumed to be queuing outside the region.

• average speed (m/s) of the vehicles.
• average trip length (m) and duration (s). Length and

duration reports the average measurement of the trips



TABLE I
PERFORMANCE ACHIEVED IN SIMULATION ON THE CONSIDERED URBAN

REGION. DEFAULT INDICATES THAT NO TRAFFIC CONTROL IS IN USE.
DEC, CEN, AND PLAN, STAND FOR RESPECTIVELY DECENTRALISED,

CENTRALISED, AND PLANNING-BASED APPROACHES. BOLD INDICATES
THE BEST PERFORMANCE.

Considered Metrics
Default Dec Cen Plan

Departed vehicles [#] 1669 1818 1860 1895
Arrived vehicles [#] 801 1628 1668 1683
Avg, speed [m/s] 0.58 4.62 4.75 4.38
Avg, trip length [m] 2297.35 2098.49 2049.49 2043.34
Avg, trip duration [s] 788.86 354.30 356.49 353.87
Avg, trip time loss [s] 622.12 201.56 207.18 204.95

of the vehicles to reach their destination from the entry
point.

• Average time loss (s). This value indicates the time that
has been lost due to vehicles queuing, or travelling at a
very low speed.

As a first scenario for this experimental analysis, we con-
sider the ideal case where all the vehicles in the modelled
region are connected, and they are all following the provided
route indications. This gives a clear figure of the potential
impact of the routing approaches. Results are presented in
Table I, and include the default performance of the network,
achieved when no traffic routing control is in operation. In the
Default settings, vehicles enter the network and follow their
pre-calculated path to the destination, that does not take into
account the network conditions. It should come as no surprise
that the default leads to the worst possible performance with
regards to all the considered metrics. Table I also shows the
performance achieved by the best Centralised and Decen-
tralised approaches, as for [14]. The presented results suggest
that the proposed planning-based approach can effectively
route traffic in the modelled region. In particular, the planning-
based approach allows the largest number of vehicles to enter
the region and to reach their predefined destination. It is also
capable of finding a good tradeoff between average time loss
and trip duration.

Results presented in Table I focus on the conditions inside
the controlled region. An aspect that is not captured is that
of vehicles that are approaching the region or trying to
enter it. Figure 4 gives an overview of the vehicles that are
waiting to enter the region, when the different real-time routing
approaches are in charge. As expected, using no traffic routing
quickly leads to very congested entry points, that do not allow
traffic to enter and potentially leading to severe traffic issues
on the surrounding areas. In some measure, however, this is
also true for the Centralised and Decentralised approaches
that we consider. After about 20 minutes (30 minutes), the
Decentralised (Centralised) routing technique is failing to
quickly move traffic away from the entry points, and the
approaching vehicles are queuing just outside the controlled
region, with average waiting times ranging between 20 and 40

Fig. 4. Performance, in terms of mean waiting time (top) and number
of waiting vehicles (bottom), achieved by the default (no traffic control),
centralised, decentralised, and planning-based approaches on the modelled
region. Waiting vehicles are outside the region, waiting to be able to enter
via an entry point.

seconds by the end of the simulation. Similar figures are shown
in terms of number of vehicles waiting to enter the region. In
contrast, the proposed Planning-based approach demonstrates
to be capable of maintaining entry links decongested, allowing
more traffic to navigate the region and minimising the queues
at the boundaries. It should be noted that, even though this
is not modelled by the simulator, minimising the congestion
on entry points is of pivotal importance, as they can have a
knockout effect on exit points as well – i.e. worsening traffic
conditions also inside the controlled region.

Finally, we consider a scenario where not all the vehicles
are connected and follow the provided instructions. Results in
Table II show how the considered approaches would perform
if only 50% of the vehicles were following the given routing
instructions. The proposed planning-based technique is still
able to keep the entry points decongested, resulting in most
of the vehicles being able to enter the controlled region. This



TABLE II
PERFORMANCE ACHIEVED IN SIMULATION ON THE CONSIDERED URBAN

REGION, WITH A 50% PENETRATION RATE. DEFAULT INDICATES THAT NO
TRAFFIC CONTROL IS IN USE. DEC, CEN, AND PLAN, STAND FOR

RESPECTIVELY DECENTRALISED, CENTRALISED, AND PLANNING-BASED
APPROACHES. BOLD INDICATES THE BEST PERFORMANCE.

Considered Metrics
Default Dec Cen Plan

Departed vehicles [#] 1669 1801 1807 1879
Arrived vehicles [#] 801 1540 1539 1501
Avg, speed [m/s] 0.58 3.92 3.66 2.71
Avg, trip length [m] 2297.35 2303.49 2280.03 2264.40
Avg, trip duration [s] 788.86 434.01 439.09 498.23
Avg, trip time loss [s] 622.12 266.6 273.26 333.14

leads to a tradeoff with regards to time loss, as vehicles that
do not follow the given instructions can generate queues and
congestion in some areas of the network. It is worth noting
that the controller is unaware of whether a given vehicle will
follow routing instructions: this can lead to unforeseen queues
and congestion.

V. CONCLUSION

In this paper, we introduced a planning-based approach for
real-time traffic routing with the aim of mitigating congestion
in urban areas. We described the PDDL knowledge models
needed by the technique, and presented a framework that could
lead to a fully autonomous centralised urban traffic controller,
able of communicating with vehicles and providing routing
instructions according to a given objective function, and to
the network conditions.

The experimental analysis considered the central Milton
Keynes urban area in the morning rush hour. Data has been
provided by the Milton Keynes council, and the SUMO model
has been calibrated and validated. The experimental results
indicated that: (i) the proposed planning-based approach is
capable of effective real-time traffic routing; (ii) The planning-
based technique is particularly good in decongesting entry
points – minimising waiting time and queues of vehicles
approaching the region; and (iii) even if only half of the
vehicles are following routing instructions, the planning-based
approach can have a remarkably beneficial impact on traffic.
Notably, the proposed approach can be adapted to different
urban networks by modifying only the corresponding part of
the knowledge model.

We see several avenues for future work. First, we are
interested in testing the proposed planning-based approach
in different urban regions. We are interested in testing if,
in cases where not all the vehicles are following the given
instructions, it is possible to predict vehicles that are likely
to participate, and adapt the routing accordingly. Finally, we
envisage an integration of the proposed system which systems
for intelligent traffic lights control [21], [22].
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