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Abstract 

A sparse squared envelope is crucial for efficient and accurate diagnosis of bearing faults. Blind 

deconvolution is a well-established sparse feature enhancement method for the diagnostics of rolling 

bearings. Traditional blind deconvolution methods, such as minimum entropy deconvolution, are 

susceptible to random transients, making it difficult to enhance fault features of rolling bearings subject 

to strong random shocks. Deconvolution methods that take the fault characteristic frequency (or fault 

impulse period) of interest as an algorithm input parameter, such as maximum second-order 

cyclostationarity blind deconvolution, can alleviate this deficiency. However, bearing fault features are 

difficult to be enhanced by these methods when the specified characteristic frequency deviates from the 

actual value greatly. To overcome these problems, the modified smoothness index of the squared 

envelope is proposed as the objective function of the deconvolution method, and a new blind 

deconvolution method is developed to achieve a sparse squared envelope for fault diagnosis of rolling 

bearings. Furthermore, the methodology is extended to the frequency domain, and another new blind 

deconvolution method that utilizes the modified smoothness index of the squared envelope spectrum as 

the objective function is established to achieve a sparse squared envelope spectrum for bearing 

diagnostics. These two proposed blind deconvolution methods are robust to random transients and do not 

require characteristic frequency or impulse period as an input parameter for feature enhancement. The 

performance of the two proposed blind deconvolution methods is verified on experimental datasets from 

two different railway axle bearing test rigs and compared with the state-of-the-art deconvolution methods. 

The results show that the two proposed methods can effectively enhance repetitive transient features in 

noisy vibration signals and accurately diagnose different faults of railway axle bearings. 
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Abbreviation  

BD Blind Deconvolution 

CYCBD Maximum Second-Order Cyclostationarity Blind Deconvolution 

EVA Eigenvalue Algorithm 

FDSNR Frequency-Domain Signal-to-Noise Ratio 

GI Gini Index 

HI Hoyer Index 
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L2/L1 Ratio of L2 Norm to L1 Norm 

Lp/Lq Ratio of Lp Norm to Lq Norm 

MCKD Maximum Correlated Kurtosis Deconvolution 

MED Minimum Entropy Deconvolution 

MESGID Maximum Envelope Spectrum Gini Index Deconvolution 

MOMEDA Multipoint Optimal Minimum Entropy Deconvolution Adjusted 

MGID Maximum Gini Index Deconvolution 

MSI Modified Smoothness Index 

NE Negentropy 

OFM Objective Function Method 

OMED Optimal Minimum Entropy Deconvolution 

SES-BD Squared Envelope Sparsification via Blind Deconvolution with Modified 

Smoothness Index 

SESS-BD Squared Envelope Spectrum Sparsification via Blind Deconvolution with 

Modified Smoothness Index 

SMHD Sparse Maximum Harmonics-to-Noise-Ratio Deconvolution 

 

1. Introduction  

Rolling bearing is one of the basic and common rotating components in modern mechanical 

equipment. Their health condition has a significant influence on the overall operational performance of 

rotating machinery, especially complex mechanical systems such as high-speed train bogies, aircraft 

engines, wind turbines, automobile engines and marine engines. Therefore, timely and accurate fault 

diagnosis is an effective means to avoid prolonged unplanned machine downtime, prevent major personal 

injury, and improve maintenance efficiency. Surface defects in bearing components, such as fatigue 

spalling, pitting and cracks, often excite repetitive transient impulses in the bearingôs vibration response 

signal, and they are critical to implementing fault diagnosis 1,2. However, due to the harsh operating 

conditions, the repetitive transient features associated with bearing faults are usually submerged in strong 

and complex interference noise, which heavily hinders the detection and diagnosis of bearing faults. In 

particular, railway axle bearings, whose vibration signals often exhibit low signal-to-noise ratios and 

complex compositions. This is because railway trains run dynamically along the rails, resulting in 

vibration signals measured on axle boxes that typically contain: (i) vibration noise caused by track 

irregularities or track defects 3; (ii) vibration noise induced by connected transmission systems such as 

traction motors and gearboxes 4; (iii) vibration noise excited by wheel out-of-round such as wheel 

polygon, flat scar and scratch 2,5. These unfavorable factors lead to challenges in fault diagnosis of 

railway axle bearings. Therefore, effective methods or techniques for reducing interference noise in the 

measured vibration signals while enhancing fault-related features need to be applied to achieve accurate 

diagnosis of bearing faults. 

Fortunately, various bearing fault diagnosis methods have been established with the help of the 

feature enhancement and noise cancellation capabilities of signal processing techniques, such as 

envelope analysis 6ï8, blind deconvolution (BD) 9,10, adaptive decomposition 11ï13, stochastic resonance 

14,15, morphological filtering 16,17 and modulation bispectrum 18,19. Among these methods, BD is an 

advanced and widely applied sparse feature enhancement method for fault diagnosis of rolling bearings. 

Its basic principle is to devise an inverse filter to reconstruct the repetitive transient impulses caused by 
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bearing defects from the measured signal by optimizing an appropriate objective function. There are two 

popular methods for solving inverse filters: the objective function method (OFM) and the eigenvector 

algorithm (EVA) 20,21. OFM requires that the objective function of deconvolution be differentiable, i.e., 

it is not suitable for solving the deconvolution problem of non-differentiable objective functions. EVA 

can give equivalent filter coefficients and there is no restriction on whether the objective function is 

differentiable or not. Therefore, the usable range of EVA is broader than that of OFM. In recent years, 

two other methods for solving inverse filters have been developed, namely the particle swarm 

optimization (other optimization algorithms can also be employed) and generalized spherical coordinate 

transformation-based method 22,23 and the convolutional sparse learning-based method 24ï27. These 

schemes extend the solution methods of deconvolution problems, while the complexity of the filter 

optimization process is increased compared with OFM and EVA. 

Minimum entropy deconvolution (MED) 28 with kurtosis as the objective function is an earlier BD 

method applied in the field of machinery fault diagnosis 29,30. However, kurtosis is easily affected by 

random transients or outliers in the signal, causing MED to tend to enhance random transients in the 

vibration signal that are unrelated to bearing faults. To enhance the capability of repetitive transient 

recovery, a series of BD methods with improved performance have been developed, which can be divided 

into two categories from the perspective of the objective function: impulse period or characteristic 

frequency independent and impulse period or characteristic frequency dependent. The former uses 

metrics (computed from the time or frequency domain) independent of the impulse period or 

characteristic frequency as the objective function of deconvolution, such as D-norm 31, Jarque-Bera 

statistic 32, impulse norm 33, envelope spectrum sparsity indicators 34, generalized Lp/Lq norm 35ï37, Gini 

index (GI) 38 and Box-Cox sparse measures 39. Note that MED also falls into this category. These methods 

can adaptively enhance transient features hidden in the bearing vibration signals, but some of them may 

not perform well in the presence of strong random transients or other interfering noise, such as only a 

single impulse or a few impulse features may be enhanced. The latter uses metrics (calculated from the 

time or frequency domain) that rely on the impulse period or characteristic frequency as the objective 

function of deconvolution, such as correlated kurtosis 40, multi D-norm 41, harmonic-to-noise ratio 42, 

indicator of second-order cyclostationarity 21, autocorrelation impulse harmonic to noise ratio 43, average 

kurtosis 44, correlated generalized Lp/Lq norm 45 and improved correlated generalized Lp/Lq norm 46. 

These methods exhibit relatively robust repetitive transient enhancement performance in the presence of 

high-amplitude random transients with the help of impulse period or characteristic frequency knowledge. 

However, when the impulse period or characteristic frequency of interest deviates from the actual value 

greatly, they cannot effectively recover the desired repetitive transient features, resulting in poor fault 

diagnosis performance. A recent work 9 summarizes the development and application of the BD methods 

in the field of machinery fault diagnosis. 

It is widely recognized that bearing fault signals exhibit typical impulsiveness and cyclostationarity. 

The objective functions computed from the time domain (e.g., the original signal and its squared envelope) 

mainly evaluate the impulsiveness of the bearing fault signal, as in 28,31ï33,35,36,38, while the objective 

functions computed from the frequency domain (e.g., the squared envelope spectrum) focus on 

evaluating the cyclostationarity of bearing fault signals, as in 21,34,37ï39. The use of envelope spectrum 

sparsity indicators to reveal cyclostationarity of bearing fault features initially began with envelope 

analysis. Barszcz and JabğoŒski 47 proposed to use the kurtosis of the envelope spectrum of the 

demodulated signal instead of the kurtosis of the filtered signal to detect repetitive transients. After that, 

Antoni 48 proposed to use the negentropy (NE) of the squared envelope and of the squared envelope 
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spectrum of the signal to detect the impulsiveness and cyclostationarity of repetitive transients, 

respectively. These are typical applications for measuring the sparsity of the envelope spectrum. 

Maximum second-order cyclostationarity blind deconvolution (CYCBD) 21 is a pioneering BD method 

aiming at enhancing cyclostationarity, but its objective function, the indicator of second-order 

cyclostationarity, requires the characteristic frequency of interest as a priori knowledge. To overcome 

this limitation, Peeters et al. 34 developed blind filtering based on envelope spectrum sparsity indicators 

including NE, L2/L1 and Hoyer index (HI) to enhance repetitive transients in machine vibration signals. 

This work is the first to propose the idea of using the sparsity measure of the squared envelope spectrum 

as the objective function of BD to remove the need for an exact priori knowledge of fault characteristic 

frequency while maintaining robustness to impulse noise. Inspired by this work, the BD methods 37ï39 

based on generalized Lp/Lq norm, GI and Box-Cox sparse measures of the squared envelope spectrum 

have been proposed and applied to fault diagnosis of rotating machinery. 

As mentioned above, sparsity measures are independent of the impulse period or characteristic 

frequency and enable adaptive enhancement of bearing fault features when used as the objective function 

for BD. In addition to kurtosis, generalized Lp/Lq norm, NE and GI, the smoothness index 49 (or its 

reciprocal 50) is also a sparsity measure commonly used to quantify transient features associated with 

bearing faults. The smoothness index was used early in speech signal processing 51, and its statistical 

interpretation in terms of a measure of extreme non-Gaussianity was recently introduced in 52. Differently, 

the smoothness index gradually decreases as the data sequence becomes sparse. In a recent work 53, the 

modified smoothness index (MSI) was proposed as an alternative. MSI not only has a limited magnitude 

range of [0, 1] but also exhibits the same evolution characteristics as kurtosis when transient features 

appear. In addition, the random transient resistibility of MSI is slightly stronger than that of GI, which 

may be more suitable for the cases of random transients. Therefore, the bearing fault diagnosis method 

based on MSI is very worth to be investigated. 

To establish a bearing fault diagnosis method that can adaptively enhance fault-related repetitive 

transient features in the signal and is robust to random transients, inspired by the work of Peeters et al. 34 

and Miao et al. 38, the BD methods based on MSI are investigated and developed in this paper for 

enhancing repetitive transients. The main novelties and contributions of this paper are described as 

follows: 

(1) MSI of the squared envelope is proposed as the objective function of deconvolution, and a new 

BD method is devised to achieve sparse squared envelop for fault diagnosis of rolling bearings, named 

squared envelope sparsification via BD with MSI (abbreviated as SES-BD). 

(2) The sparse feature enhancement is extended to the frequency domain, and a new BD method 

that takes MSI of squared envelope spectrum as the objective function, named squared envelope spectrum 

sparsification via BD with MSI (abbreviated as SESS-BD), is developed to generate sparse squared 

envelope spectrum for bearing diagnostics. 

(3) The inverse filters of the SES-BD and SESS-BD methods for transient feature enhancement are 

derived by EVA, respectively, and the corresponding deconvolution theories are given in detail. 

(4) The effectiveness and advantages of the two proposed BD methods are verified by bearing 

experimental data collected from two different railway axle bearing test rigs and by comparison with 

several existing BD methods. 

The rest of this paper is structured as follows. In Section 2, the theoretical background of BD is 

briefly reviewed. Section 3 details the two proposed BD methods. In Sections 4 and 5, the two proposed 

BD methods are validated using experimental signals collected from two different railway axle bearing 
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test rigs, respectively. Section 6 quantitatively analyzes the fault diagnosis performance of the two 

proposed BD methods. Finally, the main conclusions of this paper are summarized in Section 7. 

2. Theoretical background 

In this section, the deconvolution problem is first illustrated, followed by a brief review of typical 

BD methods for bearing fault diagnosis. 

2.1. Deconvolution problem statement 

The target of deconvolution is to restore the targeted signal component s  or to find an approximate 

estimate of it from the measured signal x  by an inverse filter h  54. The deconvolution problem is 

modeled as follows: 

*=s x h                                                               (1) 

where * denotes the convolution operation. The matrix form of equation (1) is 21,41: 

=s Xh                                                                (2) 
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where N and L are the lengths of the measured signal x  and inverse filter h , respectively. Note that 

this paper uses the adjusted convolution definition proposed by McDonald and Zhao 41 to avoid 

introducing spurious impulses at the start of the filtered signal. This adjustment reduces the length of the 

filtered signal by L compared to the original signal but generally does not affect machine fault diagnosis. 

The observed signal output by the sensor is usually a mixture of the content of interest and the 

unavoidable noise as follows 9: 

* *s s n n= +x c g c g                                                       (4) 

where sc  and nc  represent the content of interest and the noise component, respectively; sg  and ng  

denote the effects of transmission paths associated with sc  and nc , respectively. In actual industrial 

scenarios, the collected machine vibration signals are usually multi-component signals. For fault 

diagnosis of rotating machine components such as bearings and gears, the content of interest sc  is the 

repetitive transients caused by local defects in the machine components. Due to the complex operating 

conditions, the interference noise nc  usually includes background noise with approximately Gaussian 

distribution, random impulses caused by unknown shocks and discrete harmonics caused by eccentricity 

and other factors 9,33,55. 

Substituting equation (4) into equation (1), the deconvolution problem is expressed as: 

( )* * *s s n n s= + ºs c g c g h c                                              (5) 

Thus, deconvolution aims to design an optimal filter h  to reconstruct the desired component sc  

while eliminating the unwanted component nc . A schematic diagram of the deconvolution process for 

restoring the content of interest is shown in Figure 1. 

2.2. Typical deconvolution methods for bearing diagnostics 

Repetitive transients caused by defects in rolling bearings are impulsive and periodic (strictly 
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cyclostationary). In response to these two typical characteristics, two categories of deconvolution 

methods have been established: impulse period or characteristic frequency-independent BD and impulse 

period or characteristic frequency-dependent BD. The main difference between these two categories of 

BD methods is whether the objective function used relies on the impulse period or the characteristic 

frequency associated with bearing fault. Typical deconvolution methods for bearing fault diagnosis and 

their details are depicted in Table 1. 

 

 

Figure 1. Schematic diagram of the deconvolution process. 

 

Table 1. Typical deconvolution methods for bearing diagnostics and their objective functions. 

Category Method Objective function Inverse filter solution 

Impulse period/ 

characteristic 

frequency-

independent BD 

MED 28 Kurtosis OFM 

Optimal MED 31 D-norm OFM 

Blind filters based on 

envelope spectrum 

sparsity indicators 34 

NE, L2/L1 and HI of the 

squared envelope spectrum 

EVA 

Maximum Gini index 

deconvolution (MGID) 

and maximum 

envelope spectrum Gini 

index deconvolution 

(MESGID) 38 

GI of the squared envelope 

and GI of the squared 

envelope spectrum 

EVA 

Blind filtering based on 

Box-Cox sparse 

measures 39 

Box-Cox sparse measures 

of the squared envelope 

spectrum 

EVA 

Impulse period/ 

characteristic 

frequency-

dependent BD 

Maximum correlated 

kurtosis deconvolution 

(MCKD) 40 

Correlated kurtosis OFM 

Multipoint optimal 

minimum entropy 

deconvolution adjusted 

(MOMEDA) 41 

Multi D-norm OFM 

Sparse maximum 

harmonics-to-noise-

ratio deconvolution 

(SMHD) 42 

Harmonics-to-noise-ratio OFM 

CYCBD 21 Indicator of second-order 

cyclostationarity 

EVA 
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The BD methods that are independent of impulse period or characteristic frequency can adaptively 

extract transient features in the signal, but the fault diagnosis performance of such methods is sometimes 

seriously affected by high-amplitude random transients. Among the objective functions of these methods, 

GI is more robust to random transients than kurtosis, NE, L2/L1 and HI 53, thereby GI-based BD methods 

may be more effective in the presence of random transients. However, the repetitive transient 

detectability of GI is lower than that of kurtosis and NE under noise interference 53. Moreover, railway 

axle bearings serve on bogies that run dynamically along the rails, resulting in their vibration signals 

usually containing complex background noise and strong random transients from track irregularities and 

track defects. These unfavorable factors may cause the failure of GI-based BD methods in detecting axle 

bearing faults. 

Aided by knowledge of impulse period or characteristic frequency, another category of BD methods 

represented by MCKD, MOMEDA, SMHD and CYCBD exhibits relatively strong capability to enhance 

repetitive transient features in noisy measurement signals. Among such methods, CYCBD delivers strong 

background noise resistibility compared to MCKD, MOMEDA and SMHD due to the use of an objective 

function computed from the frequency domain. However, these methods all require the exact impulse 

period or characteristic frequency as an input parameter and can only reconstruct repetitive impulse 

features of the specified period or frequency. The feature enhancement and diagnostic performance of 

such methods are severely degraded when the impulse period or characteristic frequency is inaccurate 33. 

In addition, due to the frequent acceleration and braking of railway trains, the running speed of the 

wheelset often fluctuates and the impulse period and characteristic frequency of interest are difficult to 

obtain accurately. These unavoidable factors may cause the BD methods that rely on impulse period or 

characteristic frequency to fail when diagnosing axle bearing faults. 

3. Blind deconvolution driven by modified smoothness index 

In this section, the method for solving the MSI-based deconvolution problem is first introduced, and 

then two proposed BD methods based on MSI, namely SES-BD and SESS-BD, are elaborated. 

3.1. Solution method of MSI-based deconvolution problem 

MSI requires the input sequence to be non-negative. However, the amplitudes of the collected 

bearing vibration signals are generally both positive and negative. Therefore, a modulo operation is 

usually performed on the signal sequence before calculating MSI. Based on the demodulation capability 

of the Hilbert transform, the squared envelope and the squared envelope spectrum can not only highlight 

the bearing fault-related features but also have non-negative amplitudes. In this section, the MSI of the 

squared envelope and the MSI of the squared envelope spectrum are proposed as objective functions for 

deconvolution, respectively, which lead to MSI being non-differentiable. This means that OFM cannot 

be used to solve MSI-based deconvolution problems. Fortunately, this problem can be solved by EVA. 

Thus, EVA is adopted to solve the inverse filters of two proposed BD methods for enhancing bearing 

fault-related features. 

3.2. Squared envelope sparsification via blind deconvolution with modified smoothness index 

The objective function of SES-BD is the MSI of the squared envelope, which is dedicated to finding 

an optimal inverse filter to maximize the MSI of the squared envelope of the filtered signal, i.e., achieve 

a sparse squared envelope. Based on equation (2), the squared envelope can be expressed as 21,34: 
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( )
2 2 Tdiag= = =SE s Xh s Xh                                       (6) 

where the superscript ñTò represents the transpose of a vector or matrix. The MSI of the squared envelope 

is defined as: 

[]

[]

1

1

1
1

N
N

n

N

n

SE n
MSI

SE n
N

=

=

= -
Ô

ä
                                            (7) 

The numerator and denominator of equation (7) can be respectively formulated as: 
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Thus, equation (7) is expressed in matrix form as: 
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where 1W  and 2W  are two diagonal matrices, as follows: 
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Substituting equation (6) into equation (10), the following expression can be obtained: 
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where 
1XW XR  and 

2XW XR  are two weighted correlation matrices, as follows: 
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Equation (12) is a generalized Rayleigh quotient whose maximization with respect to h  is 

equivalent to solving the maximum eigenvalue ɚ of the generalized eigenvalue problem as follows: 
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1 2
= Wl

XW X X X
R h R h                                                  (14) 

The maximum eigenvalue obtained by equation (14) corresponds to the maximum MSI and the 

eigenvector corresponding to the maximum eigenvalue is equivalent to the optimal inverse filter h . 

However, the optimal filter h  cannot be achieved directly by equation (14) because the computation of 

1XW X
R  and 

2WX X
R  requires an initial guess of h . Therefore, the equivalence between the maximum 

eigenvalue ɚ and the maximum MSI (i.e., the optimal h ) can only be achieved by an iterative algorithm. 

Based on the aforementioned theories and derivations, a flowchart of the SES-BD method for bearing 

fault diagnosis is depicted in Figure 2. The implementation procedure of SES-BD is described as follows: 

 

 

Figure 2. Flowchart of the SES-BD method for bearing diagnostics. 

 

Step 1: Collect the vibration acceleration signal of the monitored rolling bearing. 

Step 2: Set filter length and iteration stopping criterion. 

Step 3: Estimate an initial guess for the inverse filter h . 

Step 4: Calculate the filtered signal s  using X  and guessed h , then calculate 1W  and 2W  

using the squared envelope. 

Step 5: Compute 
1XW X

R  and 
2WX X

R  using s , X , 1W  and 2W . 

Step 6: Solve equation (14) to get the eigenvector corresponding to the maximum eigenvalue, i.e. 

the filter h . 

Step 7: Return to Step 4 to further optimize the inverse filter using h  updated in Step 6 until the 

iteration stopping criterion is met. 

Step 8: Generate the optimal filtered signal using X  and optimal h . 

Step 9: Perform envelope spectrum analysis on the filtered signal to diagnose bearing faults 
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In this study, the initial guess of the inverse filter is achieved by a whitening filter, which is the same 

strategy used in 21. This initial filter can attenuate the deterministic components of the bearing vibration 

signal. In addition, a double criterion is used to stop the iterative process: either the relative error of the 

maximum eigenvalues obtained by two consecutive iterations is less than a certain value or the maximum 

number of iterations is satisfied. 

3.3. Squared envelope spectrum sparsification via blind deconvolution with modified smoothness index 

The objective function of SESS-BD is the MSI of the squared envelope spectrum, which aims to 

devise an optimal inverse filter to maximize the MSI of the squared envelope spectrum of the filtered 

signal, i.e., achieve a sparse squared envelope spectrum. 

Based on equation (6) and discrete Fourier transform, the squared envelope spectrum is expressed 

as 21,34: 

( )T Tdiag=SES F s Xh                                          (15) 
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where K is the maximum index of the frequency range of interest in the squared envelope spectrum. The 

MSI of the squared envelope spectrum is defined as: 
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The numerator and denominator of equation (17) can be respectively formulated as: 
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Equation (17) is expressed in matrix form as: 
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where 1W  and 2W  are two diagonal matrixes, as follows: 
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Then, substituting equation (15) into equation (20), the MSI can be further expressed as follows: 
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Similar to equation (12), the maximization of the generalized Rayleigh quotient in equation (22) 

with respect to h  is equivalent to solving the maximum eigenvalue ɚ of the following generalized 

eigenvalue problem: 

1 2
= Wl

XW X X X
R h R h                                              (24) 

Therefore, the eigenvector h  corresponding to the maximum eigenvalue of equation (24) is the 

optimal inverse filter for SESS-BD. The implementation procedure of SESS-BD is similar to that of SES-

BD, thus the related description and flowchart are not given. The only difference between them is the 

calculation of the weighted correlation matrices 
1XW X

R  and 
2WX X

R . In addition, due to the need for 

discrete Fourier transform, the process of optimizing the inverse filter of SESS-BD is relatively more 

complicated than that of SES-BD. 

3.4. Parameter settings 

Before the verification of the diagnostic performance of SES-BD and SESS-BD, the settings of the 

main algorithm parameters are discussed below. The parameters of these two BD methods mainly include 

filter length, minimum relative error and maximum number of iterations. 

The filter length not only affects the feature enhancement performance but also the computational 

efficiency of the algorithm. When the filter length is set to be small, the computational time can be 

shortened, but it may not match the impulse response caused by bearing faults, resulting in the inability 

to effectively enhance fault impulse features. However, when the filter length is set larger, although it 
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can effectively match the impulse response caused by bearing faults and enhance fault features, the 

calculation time is greatly increased, which weakens the efficiency of fault detection. Therefore, the filter 

length should be chosen as a compromise. Based on the results of multiple experiments, the filter length 

is set to 100 in this paper. 

The minimum relative error and the maximum number of iterations are used to stop the iterative 

procedure for optimizing the inverse filter. If the minimum relative error is set too large and the maximum 

number of iterations is assigned too small, a relatively optimal inverse filter may be difficult to obtain; 

on the contrary, it will greatly increase the computational time of optimizing the inverse filter, thereby 

affecting the efficiency of fault detection. Therefore, based on the results of previous studies and multiple 

experiments, the minimum relative error and the maximum number of iterations are specified as 0.001 

and 30, respectively, in this paper. 

Additionally, to shorten the computational time, the squared envelope spectrum in the entire 

frequency band is not employed to calculate MSI in SESS-BD, but the envelope spectrum in the low-

frequency band is used to calculate MSI. In this paper, the squared envelope spectrum magnitude of the 

low-frequency band, which contains the first four harmonics of the bearing fault characteristic frequency, 

is employed. 

4. Case study 1 

In this section, the axle bearing experimental data collected from the wheelset bearing test rig of 

railway passenger cars are used to verify the fault diagnosis performance of SES-BD and SESS-BD, 

including outer race fault and rolling element fault. In addition, the fault detection results of the state-of-

the-art BD methods are presented for comparison, including MED, CYCBD, blind filtering based on 

envelope spectrum sparsity indicators, MGID and MESGID. In this paper, the blind filtering methods 

based on NE, L2/L1 and HI of the squared envelope spectrum are abbreviated as ESNE-BF, ESL21-BF 

and ESHI-BF, respectively, for the convenience of distinction. 

4.1. Experimental setup 

The wheelset bearing test rig of railway passenger cars is mainly composed of a foundation, a 

wheelset with two axle bearings, driving device, loading device and control system, as shown in Figure 

3(a). A healthy bearing and a damaged bearing are installed on both ends of the wheelset. The axle 

bearings with outer race fault and rolling element fault were tested at constant rotational speed, 

respectively. The local damage on the surface of the bearing components is artificially implanted and has 

a depth of 0.2 mm and a width of 0.6 mm, as exhibited in Figure 3(b) and (c). The pith diameter, rolling 

element diameter, contact angle and the number of rolling elements of the tested railway bearings are 

187.21 mm, 26.69 mm, 12.08Á and 17, respectively. An accelerometer was mounted above the axle box 

to collect the vibration signal of the damaged axle bearing at a sample rate of 12800 Hz. The sampling 

length of each signal is 8192 data points. 
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Figure 3. (a) Wheelset bearing test bench for railway passenger cars, (b) damaged outer race of axle bearing, and (c) 

damaged rolling element of axle bearing. 

 

4.2. Axle bearing outer race fault 

The vibration signal of the axle bearing with damaged outer race was collected at the rotational 

speed of 884 r/min, as shown in Figure 4(a). The fault characteristic frequency of the bearing outer race 

is about fo=107.6 Hz. Figure 4(b) displays the envelope spectrum of the bearing experimental signal. The 

spectral lines at the fault characteristic frequency fo of bearing outer race and its harmonics are not 

protruding, showing that the direct envelope spectrum analysis fails to detect the outer race fault of the 

tested axle bearing. 

The proposed two BD methods are applied to the signal shown in Figure 4(a) for enhancing bearing 

fault features. To highlight the performance of the proposed methods, seven state-of-the-art 

deconvolution methods including MED, CYCBD, ESNE-BF, ESL21-BF, ESHI-BF, MGID and 

MESGID are also applied to the experimental signal. For a fair comparison, the seven comparison 

methods employ the same filter length and iteration-stopping criterion as the proposed methods. Figures 

5 and 6 display the filtered signals and their envelope spectra achieved by different deconvolution 

methods. Note that the amplitudes of the filtered signals are normalized for ease of comparison. As shown 

in Figure 5(a) and (g) and Figure 6(c), a prominent impulse feature can be observed in the filtered signals 

of MED, ESL21-BF and MESGID, while the repetitive impulses are still submerged in the noise 

components, resulting in the fault characteristic frequency of the bearing outer race cannot be detected 

in the envelope spectra shown in Figure 5(b) and (h) and Figure 6(d). Thus, MED, ESL21-BF and 

MESGID fail to detect the outer race fault of the axle bearing. In contrast, CYCBD, ESNE-BF, ESHI-

BF, MGID, SES-BD and SESS-BD successfully confirm the bearing outer race fault. Repetitive impulses 

can be observed in the filtered signals of these six methods, as shown in Figure 5(c), (e) and (i) and 

Figure 6(a), (e) and (g), and the fault characteristic frequency of the bearing outer race and its harmonics 

can be easily detected in the corresponding envelope spectra, as shown in Figure 5(d), (f) and (j) and 

Figure 6(b), (f) and (h). Although the repetitive impulses in Figure 5(c) are more pronounced than those 

in Figure 6(a) and (e), the harmonic frequency 4fo, which can be observed in Figure 6(b) and (f), cannot 

be detected in Figure 5(d). The fault detection effect achieved by SESS-BD is similar to that of ESNE-

BF, as presented in Figure 5(f) and Figure 6(h). These results show that SES-BD and SESS-BD can 

effectively enhance bearing fault-related features in noisy vibration signal and accurately diagnose the 

outer race fault of axle bearing. Additionally, the two proposed methods exhibit stronger resistibility to 

random impulses than MED, ESL21-BF and MESGID. 
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Figure 4. (a) Vibration acceleration signal of outer race damaged axle bearing and (b) its envelope spectrum. The 

unit of the amplitude: m/s2. The red dotted line indicates the fault characteristic frequency of the bearing outer race 

and its harmonics. 

 

 

Figure 5. Filtered signals and their envelope spectra obtained by different deconvolution methods for processing the 

vibration signal of outer race damaged axle bearing: (a)-(b) MED, (c)-(d) CYCBD, (e)-(f) ESNE-BF, (g)-(h) ESL21-

BF, (i)-(j) ESHI-BF. The red dotted line indicates the fault characteristic frequency of the bearing outer race and its 

harmonics. 
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Figure 6. Filtered signals and their envelope spectra obtained by different deconvolution methods for processing the 

vibration signal of outer race damaged axle bearing: (a)-(b) MGID, (c)-(d) MESGID, (e)-(f) SES-BD and (g)-(h) 

SESS-BD. The red dotted line indicates the fault characteristic frequency of the bearing outer race and its harmonics. 

 

4.2. Axle bearing rolling element fault 

The vibration signal of the axle bearing with damaged rolling element was acquired at the rotational 

speed of 856 r/min, as exhibited in Figure 7(a). The fault characteristic frequency of the bearing rolling 

element is about fb=48.5 Hz. The envelope spectrum of the experimental signal is displayed in Figure 

7(b). The fault-related impulses are heavily polluted by interfering noise. Only the second harmonic 2fb 

of the fault characteristic frequency of bearing rolling element can be identified in Figure 7(b), which 

cannot accurately determine the rolling element fault of axle bearing. 

The proposed two methods and seven typical deconvolution methods are applied to the experimental 

signal shown in Figure 7(a) to enhance the impulse features induced by bearing rolling element fault. 

The filtered signals and their envelope spectra achieved by different deconvolution methods are displayed 

in Figures 8 and 9. Note that the amplitudes of the filtered signals are normalized. As shown in Figure 

8(a), (c) and (g) and Figure 9(a) and (c), a prominent impulse can be clearly observed in the filtered 

signals while the repetitive impulse features are not obvious. In Figure 8(b), (d) and (h) and Figure 9(b) 

and (d), only the fault characteristic frequency of the rolling element fb and its harmonic 2fb can be 

vaguely detected, while other harmonics cannot be identified. These results indicate that MED, CYCBD, 

ESL21-BF, MGID and MESGID fail to effectively enhance the impulse features caused by rolling 

element fault and are susceptible to strong random impulses in the signal. However, ESNE-BF, ESHI-

BF, SES-BD and SESS-BD effectively enhance the repetitive impulse features and the fault characteristic 

frequency of the bearing rolling element and its first four harmonics can be easily detected in the envelope 

spectra of the filtered signals, as depicted in Figure 8(e), (f), (i) and (j) and Figure 9(e), (f), (g) and (h). 

It can be observed that the fault diagnosis effect achieved by SES-BD and SESS-BD is similar to that of 

ESNE-BF and ESHI-BF. This case shows that SES-BD and SESS-BD are more robust to random 

transients compared with MED, ESL21-BF, MGID and MESGID and can effectively diagnose rolling 

element fault of railway axle bearing. In addition, compared with CYCBD, SES-BD and SESS-BD can 


