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Evaluating the intention to use Industry 5.0 (I5.0) drones for cleaner 
production in sustainable food supply chains: an emerging 

economy context  

Abstract  

Purpose – The purpose of this study is to evaluate food supply chain stakeholders’ intention 
to use Industry 5.0 (I5.0) drones for cleaner production in food supply chains.  

Design/methodology/approach – We used a quantitative research design and collected 
data using an online survey administered to a sample of 264 food supply chain stakeholders 
in Nigeria. The partial least square structural equation model (PLS-SEM) was conducted to 
assess the research’s hypothesised relationships.   

Findings – We provide empirical evidence to support the contributions of I5.0 drones for 
cleaner production. Our findings showed that food supply chain stakeholders are more 
concerned with the use of I5.0 drones in specific operations such as reducing plant diseases 
which invariably enhances cleaner production. However, there is less inclination to drones 
adoption if the aim was pollution reduction, predicting seasonal output and addressing workers 
health and safety challenges.  Our findings outline the need for awareness to promote the use 
of drones for addressing workers hazard challenges and knowledge transfer on the potentials 
of I5.0 in emerging economies.  

Originality – This is the first study to address I5.0 drones' adoption using a sustainability 
model. We contribute to existing literature by extending the sustainability model to identify the 
contributions of drones use in promoting cleaner production through addressing specific 
system operations. This study addresses the gap by augmenting a sustainability model, 
suggesting that technology adoption for sustainability is motivated by curbing challenges 
categorised as drivers and mediators. 

Keywords: Industry 5.0 drones, agricultural operations, emerging economy, Nigeria, 
sustainability 
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1.0 Introduction  

The contributions of agriculture to economic growth in emerging economies are well 
documented. For instance, a report by the World Bank (2022) showed that in 2018, 
agriculture’s contribution to the gross domestic product (GDP) in emerging economies was 
over 25%. The notion is that the accurate development and dissemination of agricultural 
products would reduce poverty, raise incomes, and facilitate economic growth (Zeng et al., 
2015).  However, the global population explosion, agriculture security and safety (Ge et al., 
2016; UN 2022), and environmental concerns have threatened agriculture operations (Adams 
et al., 2021). Moreover, the recent pandemic further highlighted the vulnerabilities of the 
agricultural sector, evident through disruptions in what are predominantly human-oriented 
production processes (Choudhury et al., 2020). Also, transportation issues and labour 
shortages, which meant overreliance on inexperienced workers', often under informal or 
casual arrangements has affected food production (Ahmed et al., 2021).  

Emerging digital technologies have transformed the way in which organiations operate and 
manage their supply chains (Frederico et al. 2019), thus it is unsurprising that research on 
technology use is considered pertinent within the agricultural domain (Liu et al., 2020). Hence 
there are renewed calls on innovative solutions in tackling challenges faced in the agricultural 
sector, including the use of technology for cleaner production. It is particularly relevant since 
emerging technologies have the potential to respond to disasters and societal challenges 
effectively and efficiently (Dennehy et al. 2021). Industry 4.0 (I4.0) and more notably the 
advent of Industry 5.0 (I5.0) applications, including smart farming, blockchain, cloud 
computing, drones, precision agriculture, connected applications and real-time virtualisation, 
have been suggested to increase production efficiencies by tackling food supply operation 
challenges (Saiz-Rubio and Rovira-Más 2020; Panetto et al. 2020).  

Despite the pivotal role the food sector plays on the global scale, and the apparent benefits 
I5.0 related techniques can have, the uptake has been predominantly slower across food 
supply chains when compared with other manufacturing industries (Duong et al. 2020). In 
order to achieve this, focus must shift from the technology and process to people. Preuss and 
Fearne (2022) highlight the importance of studying supply chain stakeholders, given their role 
within supply chain in achieving sustainability goals. Hence, there is a need to understand 
human related factors, which impede the uptake of such technologies within food supply 
chains.  

While Michels et al. (2020) examined the adoption of drones by farmers, their study is based 
in Germany, which is a developed economy. Other studies have focused on understanding 
the adoption of technology in agricultural supply chains, such as their attitudes 
towards electronic identification (Lima et al. 2018), agricultural technology extension modes 
(Gao et al. 2020) and photovoltaic agriculture (Li et al., 2021). Yet, a criticism of I4.0 literature 
is that it has largely focused on technical perspectives, largely overlooked human factors 
(Grabowska et al. 2022) and focused more on profit-maximisation (Oláh et al, 2020), at the 
expense of sustainability. It can be argued that I5.0 are ideal lenses to explore the interplay 
between innovation, sustainability and food supply chains, as it shifts the focus solely on 
technology, as is the case for I4.0 (Erboz et al. 2022), towards a more encompassing 
approach, in which it attempts to consolidate resilience, sustainability, and human-centricity 
with advanced technologies (Ivanov 2023). Moreover, Maddikunta et al. (2022) highlight the 
potential of I5.0 in overcoming challenges posed by the pandemic, such as optimising supply 
chains. Thus, there is a need for more studies exploring the potential of I5.0, drones in food 
supply chains across emerging economies, such as Nigeria, given majority of the world’s top 
ten countries that grow food are emerging economies (World Bank, 2022). 

For example, Rejeb et. al (2023) concludes that drones contribute significantly positively to 
the logistical issues by reducing delivery time and cost, as well as increasing flexibility and 
sustainability. The research also highlight a salient feature of the drone in resulting into a net-
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positive environment by a reduced carbon emission, compared to the utilisation of fossil-fuel 
machineries in agricultural activities, resulting into environmental sustainability. The 
investigation also suggests that looking through the lens of social sustainability, the adoption 
of drone technology has the potential to decrease the vulnerability and intricacy of various 
tasks. For instance, by employing drones, critical safety issues tied to hazardous agricultural-
field terrain inspections, such as steep-sloped and tall structure in vertical farming activity, and 
pesticide application, can be effectively mitigated. These views are shared by Damoah et al 
(2021) who investigated the potential benefits of the use of AI-drones against the backdrop of 
healthcare supply chain (HSC), in Ghana. The investigation unveils that the AI-drones use 
impacted positively on the climate sustainability. This has been made possible through a 
reduced carbon emission a s the result of deployment of carbon and noise-free drones in the 
delivery of emergency medical products to healthcare centres. Further to that, the adoption of 
medical drones in the healthcare system improves societal and economic conditions by 
lowering mortality rates contributed by timely delivery of supply better coordination of 
healthcare supplies, and potentially leading to enhanced social and economic well-being for 
the population. Additionally, the implementation of medical drones contributes to the long-term 
corporate sustainability of the organization involved in the initiative.  

A host of studies carried out in the realm of healthcare sustainability agree that the use of AI-
drone in HSC, or medical drone brought numerous social and environmental benefits, leading 
to sustainability. Regardless, its use in rural HSC is still at infancy, mainly due to lack of 
government regulations, which then leading to the lack of commitment in the drone adoption 
(Koshta et al, 2022). As such, the research suggest a future work to understand and assess 
the challenges to drone technology adoption, particularly in the context where small AI drones 
are used to perform tasks such as spraying, temperature sensing and transporting small 
deliveries. 

In recent times, overcoming the adverse impact of excessive, unrestricted pesticide use has 
received growing attention, particularly within an emerging economy context (Owusu and 
Abdulai 2019). Agritech companies are increasingly growing, creating reliable data-based 
systems that connect farmers across the country. However, more needs to be done because 
the minimal adoption of farming technology, ineffective agricultural-service delivery culture, 
and low incentives for start-ups derails progressive, competitive farming and agribusiness. 
Agriculture in emerging economies, such as Nigeria, is highly affected by low skills, and it is 
supported largely by humans rather than machinery. Agricultural processing is deprived of 
value-adding content, which leads to excessive post-harvest losses annually (Ekiyor et al., 
2019). Other constraints include a poor infrastructural base, inadequate stakeholders’ long-
term financing structure, and a poor market base (Adebiyi et al., 2020).  

Focusing on emerging economies is important as there is a dearth of research and 
development in agriculture supply chains, especially across African nations (Swinnen and 
Kuijpers, 2019). Such emerging economies also face other challenges, such as lacking 
infrastructure; higher social inequalities and informality; as well as greater degree of corruption 
(Pereira et al. 2021). Given these challenges, including that of poverty and food security faced 
by these economies, it is pertinent to understand how technological infrastructure can facilitate 
the growth of agriculture in emerging economies (Fuglie et al., 2019). Similarly, the literature 
examining the contributions of innovative solutions in enhancing food supply chains in 
emerging economies is evasive (Mohamed et al., 2021), where existing studies have primarily 
focused on technological factors (Moshref-Javadi et al., 2020).  

This study engages in the debate for the potential of drones in agricultural supply chains 
including its capacity for cleaner production (Mubarik et al., 2021; Mahroof et al., 2021). For 
instance, the use of drones has been suggested as a realistic solution to global food 
challenges and shortages (Spanaki et al., 2021). Similarly, Strandhagen et al., (2020) showed 
that I4.0 sustainability in supply chains through optimised automation, enhanced collaboration, 
efficient knowledge sharing and enhanced working conditions. Yet, more research is needed 
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to understand the potential of I5.0 drones with agricultural supply chain contexts. In support of 
this, Panagou et al. (2023), outlines the need for more empirical research which places focus 
on human-centricity with I5.0 research. Accordingly, this research focuses on the following 
research questions: 

RQ1. What factors influence food supply chain stakeholders to adopt I5.0 drones for 
cleaner production? 

RQ2. Does the application of I5.0 drone solve food supply chain challenges?  

We approached our research objective by adopting a parsimonious sustainability model 
developed by Mahroof et al., (2021) which measured specific activities in agricultural 
operations whilst incorporating sustainability. The model was considered appropriate as it 
captured precise aspects of agricultural production that could influence stakeholders’ uptake 
of I5.0 drones which have not been considered in other models (Featherman et al., 2021). As 
such, we combined existing literature to measure a broad selection of variables including 
pesticide hazards, prediction accuracy, plant disease eradication, workers hazard and planting 
accuracy. Our research therefore aims to understand the determinants of drone use among 
stakeholders in a food supply chain from an emerging economy context.  

This article is structured as follows. Following details relating to the context of this research, 
section two presents a literature review, which expands on research and development in 
agriculture supply chain, followed by hypotheses development and the adopted conceptual 
model. Section three presents the methodology used, followed by the result and analysis in 
section four. The discussion of results and conclusion are presented in sections five and six, 
highlighting the research limitations and future research agenda. 

1.1 Emerging economy context: Nigeria  

Agricultural technologies can lead to financial freedom for emerging economies (Odularu, 
2020), thus raising awareness regarding technological advancements within food production 
is necessary for contexts such as Nigeria, where farmers are heavily reliant on traditional 
methods. Within such contexts, food production is contingent on seasonal rains; sparsely 
available irrigations systems, and limited pest control mechanisms (Muzari et al., 2012). With 
it rising Nigerian populace, expected to reach 400 million by 2050 (FAO, 2021) and its aspiring 
export portfolio, it is pertinent to explore the benefits of enhanced technologies such as I5.0 to 
ensure its agricultural sector can remain both competitive and sustainable.  

Thus, the Nigeria context for this research is relevant as it may signposts lessons to other 
emerging economy contexts. More importantly, the agriculture sector plays a highly significant 
role in Nigeria's economic development and progression, serving as the primary source of 
livelihood for up to 30% of 250 million Nigerians (FAO, 2022). It also accounts for 22.35% of 
its GDP (FAO, 2022). Notwithstanding the contribution of agriculture to Nigeria's economy, the 
sector is saddled with several challenges. These include climate change, low technology 
utilisation, harvest losses, and poor market access, affecting farming operations and 
productivity (Ayittey, 2016).  

Nigeria's agricultural practice is diversely represented through its multi-indigenous and multi-
cultural setup. It functions with every clan having specific methods, which present an exciting 
platform to explore (Ayittey, 2016). Despite the enormous prospects that exceed farming to 
include animal husbandry and fishing, there is a struggle for the Nigerian government to 
provide the required infrastructure. This is significant, as environmental factors, such as 
government policies and investment are shown to play a key role in the adoption of technology 
(Ali et al. 2022). The sector suffers losses in earnings attributed mainly to ineffective leadership 
resulting in poor technological adoption (Agbachom et al., 2019; Osabohien et al., 2019). 
Meaning the diffusion of technology in farming is at its lowest (Baiyegunhi et al., 2019). The 
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proposed research will offer further insights into factors which impede and support adoption 
of technology within Nigeria’s supply chain stakeholders. 

 

2.0 Literature Review: Research and development in agriculture supply chain 

2.1 Technology adoption in agriculture supply chain  

There remains limited research exploring agricultural stakeholders’ intentions towards 
adopting I5.0 drones, particularly from an emerging context. Extant literature suggests 
institutional, economic and technological factors (Takahashi et al., 2020). However, 
technological adoption within agricultural settings, constitutes complex interactions of 
interconnected factors, including workers' health and safety, pesticide hazards reduction, 
pollution reduction, and seeding accuracy, which are often overlooked (Mahroof et al., 2021; 
Adebiyi and Olabisi, 2022). Hence, utilising a conceptual model that precisely captures key 
agricultural challenges is essential for this research, as overcoming these challenges may 
determine and influence stakeholders’ uptake of I5.0 drones. Moreover, previous research 
(Alamgir Hossain and Quaddus 2011) found that farmers adoption of RFID technology was 
influenced by the industry readiness of the technology, thus indicating that the adoption of 
technology in agriculture is also contingent on its wider adoption across the sector.  

Introducing technology to agricultural practices presents numerous opportunities for change, 
innovations and economic development. However, stakeholders’ intention to these 
technologies are encumbered by several factors. Traditionally, the adoption of technology 
within agriculture is associated with personal endowments, uncertainty, availability of inputs 
and infrastructures (Uaiene, 2009). More recently, an aspect of literature has focused on 
learning & social network as factors that determine technology adoption. Other research 
classed these elements into distinctive categories. For instance, Akudugu et al. (2012) 
organised the determining aspects of agricultural technology adoption into three (3) social, 
institutional, & economic elements.  

Features of the technology are crucial requirements, influencing stakeholders’ perception of 
adopted technology. For instance, in a study exploring the determinants to consider adopting 
Climate-Smart Agriculture (CSA), it was found that age, sex, and education amongst other 
factors influences the adoption of CSA technologies (Sisay et al. 2023). The findings reveal 
that stakeholders’ intention to technology adoption were influenced when they perceived it to 
suit their needs. Jiang et al. (2023) also outlines the adoption of low-carbon agricultural 
technologies was contingent on targeted incentives and purchasing subsidies, technical 
guidance, and agricultural cooperative services. Yet, more studies are needed to understand 
adoption of I5.0 drones amongst food supply chain stakeholders.  

2.2 Industry 5.0 and Agriculture Sector 

Despite the advancements of I4.0, with studies outlining its potential to achieve higher 
sustainable supply chain performance (Belhadi et al. 2022), over the time, the application of  
I4.0 has mainly been for profit maximisation, thus leading to the depletion of natural resources, 
negative consequences on the environment, and inappropriate work conditions - all of which 
subsequently caused unsustainable consumption pattern environmentally, economically, and 
even socially (Bonilla et al., 2018). Therefore, it is argued that I4.0 still entails a huge cost to 
the environment (Oláh et al, 2020). Such concerns have triggered the evolution of I4.0 to I5.0, 
a terminology first coined by the European Commission (EC, 2021). Complementing the 
paradigm of the existing I4.0, I5.0 emphasises on the research and innovation as the elements 
driving the economy transition to a more sustainable economy, prioritising on delivering value 
to the stakeholders rather than solely to the shareholders. 



6 
 

The trajectory witnesses higher commitment on safeguarding the environment as well as the 
wellbeing of the workers (Ivanov, 2021). Ivanov (2023:1688) recently characterised I5.0 as a 
technological-organisational framework, by proposing that I5.0 is underpinned by the major 
technological principles of “collaboration, coordination, communication, automation, data 
analytics processing, and identification” covering four areas of organisation, management, 
technology, and performance assessment across societal, network and plant (field) levels, 
framing a new triple bottom line as resilient value creation, human well-being, and sustainable 
society, which spans the dimensions of planet, people, and profit (see framework of I5.0 in 
figure 1). The framework conceptualises that in the context of society, I5.0 constructs networks 
that enable the provision of products and services during crisis periods, a perspective which 
is complemented by the human-centric contextualisation of ecosystems such as food and 
agriculture, for sustainable production and usage of resources. Meanwhile, at the network 
level, supply chain capabilities are designed to stay resilience and sustainable through lean 
management, such as redundancy avoidance and risk mitigation, calling for the network 
resilience to be considered from a value-creation perspective (Aldrighetti et al. 2021, Ivanov, 
2021).  

In food supply chains, variations in production, prices, weather, and workers health are huge 
risks that threaten the supply chain network integrity (Mahroof et al., 2021). Thus, agile, 
flexible, and reconfigurable supply chains are required as they are sustainable and resilient 
(Shekarian et al., 2020). For instance, drainage water management or water gates systems 
are efficient in protecting farms against flood, but the benefit of investing in them can only be 
gained if the flood happens. Therefore, from a value creation perspective, these interventions 
are inefficient. Instead, the use of drones that connect to cloud computing to collect and 
analyse weather data and send alert to farmers if risks are detected is more valuable. At the 
plant (field) level, a human-centric perspective is adopted for the creation of an inclusive work 
environment, which is done through integrating AI into operation and creating health protection 
protocols (Shen et al. 2021, Sodhi et al. 2021).  

Echoing the European Commission’s (2021) vision of making workplaces more inclusive, 
building more resilient supply chains, and adopting more sustainable ways of production, Choi 
et al. (2022) suggest that I5.0 advocates the concept of ‘sustainable social welfare’ through 
human-machine interactions. This contributes towards sustainability of each plant (field) in the 
supply chain network, which eventually fortifies such network into a more resilient and 
sustainable network. To conclude, while a technology-centred approach drove the I4.0 (Ivanov 
et al. 2021, Zheng et al. 2021), I5.0 focuses on value creation through technology use with 
resilience, sustainability, and human-centricity as its key components (Ivanov, 2023). 
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Figure 1: Industry 5.0 framework (Source: Ivanov, 2023) 

In the context of agriculture and food supply chain, precision agriculture principles that 
underpinned agriculture 4.0 in the era of I4.0 helps farmers to enhance strategic and 
operational decisions making. The technology helps to tackle the counterproductive activities 
such as excessive use of pesticides and seasonal seedings. The technology provides a 
systematic tool to detect unforeseen problems hard to notice by visual inspection on 
occasional checks, or those that can only being detected through accumulation of experience. 
Nonetheless, some challenges remain. These include a cleaner production and value 
optimisation towards the triple bottom line. On top of these, people and processes such as 
lack of awareness on the use of technology and sustainability, high cost of technology 
acquisition, economic of scales and digital divide have widened the challenge gaps.  

The recent pandemic further inflicts labour shortage. I5.0 presents solutions to this issue, 
especially through I5.0 drones. The use of I5.0 drones, that distinguished by the interaction 
between human and technology for value creation, allows farmers to collect data and/or map 
their lands for problem detection, where solutions can be applied immediately to avoid problem 
escalation that may be more costly to manage. Thus, more focus should be placed on 
understanding the human-centricity of I5.0 within the context of sustainable supply chains.   

2.2.1 Transitioning from I4.0 to I5.0  

In the context of agriculture, I4.0 focuses on the integration of advanced technologies such as 
robotics, AI, and IoT to improve the efficiency and effectiveness of the entire agricultural value 
chain (Liu et al. 2020). These technologies have great potential in helping agricultural 
stakeholders make more informed decisions based on real-time data. A plethora of research 
has focused on precision agriculture (Liu et al, 2020; Meshram et al. 2022; Condran et al. 
2022), where I4.0 technology is deployed for data collection on soil conditions, crop health, 
and weather patterns using sensors, drones, and satellite imaging. This information is then 
analysed to optimise irrigation, fertilisation, and pesticide application, resulting in better 
resource utilisation and crop yields. Another popular focus is the "smart agricultural systems”, 
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where the I4.0 technology is advocated for farming process automation, such as planting, 
harvesting, and monitoring. The proponents of this suggest that farmers may streamline 
operations, reduce labour requirements, and enhance production by combining robotics and 
automation technologies with modern data analytics (Abbasi et al. 2022; Zhai et al. 2020).  

Research has also focused on addressing supply chain disruptions with I4.0, through real-
time monitoring and tracking technologies (Helo and Shamsuzzoha, 2020), data analytics 
(Seyedan and Mafakheri, 2020), traceability and transparency tools (Centobelli, 2022), 
assuring quality control (Tsang et al, 20219), eliminating waste (Dzhuguryan and Deja, 2021), 
and enabling more effective logistics (Sharma et al. 2022). “Data-driven decision making” has 
also received significant attention from researchers, from the use of machine learning 
algorithms to assist farmers in better understanding patterns (Gardezi et al. 2022), to 
predicting crop diseases (Chin et al. 2023), through to optimising resource allocation and 
managing risks (Sharma et al. 2020).  

Nonetheless, there are various challenges that I4.0 agricultural-related research left 
unaddressed, particularly in terms of understanding human factors and their adoption 
intentions. With the emergence and rise of I5.0 technology, there is a shift in focus towards 
human-machine interaction for sustainability, ethical ways of working and value creation. The 
current state of I5.0 has resulted in a paucity of research pertaining to its application in the 
agricultural domain and to enhance supply-chain value.  

Moreover. Ferreira et al (2022) suggested that majority of studies do not explicitly address the 
paradigm of I5.0 and there has not been much analysis on the application of I5.0 in the extant 
literature. Although focus was placed on addressing innovation and environmental 
sustainability challenges related to farming practices, discussions on factors facilitating the 
adoption of I5.0 technologies have hardly surfaced (e.g. Pallagst et al. 2019; Sodano 2019; 
Holroyd 2022).  

Given that I5.0 shifts the attention from shareholder to stakeholder value (Nahavandi, 2019), 
researchers (e.g. Chin 2021, Colla et al., 2021) have highlighted the significance of 
understanding the value of human intelligence before placing the cognitive, and technical 
capabilities in manufacturing operations. Despite these calls, there are a paucity of I5.0 
research which has empirically addressed human-technology interaction as a system, thus 
demonstrating the need for more research (Panagou et al. 2023). 

2.2.2 I5.0 and Human-Centricity 

Despite drones being one of the most intensively studied technologies in logistics in recent 
years (Kirschstein, 2020) the focus has largely been from technical perspectives, in terms of 
precision agricultural applications (Condran et al. 2022), 3D-mapping approaches (Jimenez-
Brenes et al. 2017) thermal imaging (Khaliq et al 2021) and remote phenotyping (Han et al. 
2021) as well as crop management. While studies have explored it from applied perspectives, 
such as its potential for last-mile deliveries (Kirschstein 2020), less studies have focused on 
the application of drones from within the emerging paradigm of I5.0 and its adoption by 
operational workers. With the advent and proliferation of I5.0 and given the focus has 
previously been from technical lenses, there is a gap in addressing and understanding the 
adoption of such technologies from a human perspective. 

Through examining the role of I5.0 for better food security, Guruswamy et al. (2022) outline 
that agriculture is set to become the second-largest user sector of I5.0 drones in the coming 
years. Thus, highlighting the significance of understanding the adoption and intention to use 
such innovative solutions by agricultural stakeholders. Zizic et al. (2022) argue that whist I4.0 
was based on the concept of smart factory and cyber-physical production systems, I5.0 has 
extended the social and environmental dimensions by focusing on the workers’ skills, 
knowledge, and abilities to cooperate with machines and robots, hence making it imperative 
that research is tailored towards understanding the intention to use I5.0 tools by workers.  
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Researchers (e.g., Grabowska et al., 2022; Longo et al., 2020; Ivanov, 2023) have called for 
better humanization and sustainability of I4.0 and argue the need to redress the balance 
between human and machines, by placing the role of humans central to discussions of future 
industrial development, such as I5.0. For instance, Grabowska et al. (2022) outline a drawback 
of the extant I4.0 literature is that the role of current workers is very rarely mentioned and 
given that I5.0 involves returning the human factor to industry, through a combination of 
automaton alongside humans’ cognitive skills and critical thinking (Longo et al., 2020), it 
makes it even more critical to look at human factors. Ivanov (2023) also argues that I5.0 cuts 
across a multitude of key concepts, namely sustainability, human-centricity, and resilience and 
that the contextualisation of the human-oriented and society-oriented aspects within I5.0 is a 
nascent area, worthy of academic attention and focus. 

A review of the extant I5.0 literature indicates the importance of integrating I5.0 technologies 
within organisations supply chains (see Cillo et al., 2021; Xu et al., 2021). Contrary to I4.0, the 
significance of human involvement within the I5.0 paradigm should be appreciated and further 
explored in academic research (Maddikunta et al., 2022). According, the research addresses 
this void, by drawing attention to the role of humans within I5.0 advancements. The proposed 
research also responds to Karmaker et al. (2023) call to conduct research into the adoption of 
I5.0 tools within emerging economy contexts. The authors argue implementing I5.0 
applications to manage supply chain sustainability is easier for developed countries than 
emerging economies, therefore outlining the opportunities and barriers to its adoption within 
emerging economies is important.  

2.3 Theoretical background and conceptual model  

While a plethora of studies have explored the role of innovative solutions in driving sustainable 
supply chains, limited focus has been placed on the role of drones in achieving this, through 
cleaner agricultural production. However, through taking an Interpretive Structural Modelling 
(ISM) approach, Mahroof et al. (2021) offer a robust model which uncovers 12 challenges 
which impede sustainable supply chains. Their study reveals the potential role of drones in 
overcoming these challenges, which in turn may assist organisations in transitioning towards 
sustainable supply chains. Given that the Mahroof et al. (2021) sustainability model outlines 
specific barriers and potential solutions to attaining sustainable supply chains, makes it a 
highly appropriate model for the purposes of the current study. 
 
While their exploratory study derives insights through a Circular Economy and Agritech 
literature, as well as expert opinions, the authors called for researchers to validate their 
parsimonious model in the future, as it is yet to be tested through empirical research. As such, 
this study aims to respond to this call by validating the model, while investigating the 
propositions put forward in their research.  
 
Extending research by empirically validating ISM analysis is a robust and appropriate 
approach. As highlighted by Singh and Rathi (2021), who state that a hybrid approach 
consisting of ISM-SEM analysis offers significant insights, through firstly the ability to 
conceptualise and classify barriers according to their degree of influence and secondly by 
allowing for the validation of a relational structural model. In the context of this research, the 
ISM findings from Mahroof et al. (2021) will be used as a basis to further explore and validate 
the role of I5.0 drones in achieving sustainability in supply chains, whilst also validating factors 
which influence its uptake amongst agricultural stakeholders.  
 
Moreover, unproductive workers and pesticide hazards are identified as key drivers of 
agricultural challenges by Mahroof et al. (2021). Accordingly, this study adapts the 
sustainability model and aims to validate the model through further empirical research. The 
framework (Figure 2) is an adaption of unvalidated Mahroof et al. (2021) model, which is 
adjusted for the context of our paper, in which the aim is to evaluate the determinants of I5.0 
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drones’ adoption among food supply chain stakeholders in Nigeria. The augmented 
conceptual model is presented in Figure 2, and we discuss the relationship between these 
variables in the sections below. As the research model proposed by Mahroof et al. (2021) is 
based on the data collected from the experts largely from the agriculture and technology 
domains for drone as a service for promoting cleaner agricultural production and circular 
economy for ethical sustainable supply chain, it makes sense to validate the proposed model 
and its related propositions to explore and validate this further with the primary data collected 
to evaluate food supply chain stakeholders’ intention to use Industry 5.0 (I5.0) drones for 
cleaner production in food supply chains. By using the research model suggested by Mahroof 
et al. (2021), we are not only testing the strength of the model performing in the similar context 
but also enriching that model with the context specific constructs such as seeding accuracy 
and drone application. 
 

Figure 2: Drone adoption model (Adapted from Mahroof et al., 2021)  

2.4. Hypotheses Development  

The sustainability model by Mahroof et al. (2021) argues for a hierarchical process to the 
adoption of a human-machine collaborative technology. Within this framework, pesticide 
hazard is considered an underlying challenge in farming operations. Thus, if adequately 
tackled could increase cleaner production in agricultural supply chain. We adopt this 
framework in this study and identify the key driver for human-machine collaboration as 
pesticide hazard reduction, mediated by five variables: pollution reduction, plant diseases 
alleviation, seeding accuracy, workers’ health and safety and prediction accuracy. These 
variables will be discussed, and related hypotheses presented. 

2.4.1 The link between I5.0 drones and pesticide hazard reduction 

One of the major challenges of agricultural production is pesticide usage (Vasseghian et al. 
2022). Several solutions have been developed to facilitate its application, such as using real-
time detection systems, precise real-time treatment and unmanned drones to minimise 
hazards caused by pesticide use (onzalez-de-Santos et al. 2017). Researchers have argued 
for the use of emerging technologies such as AI, IoT, blockchain and digital twin to enhance 
automation and precise production systems (Rajput and Singh, 2020; Mubarik et al., 2021; 
Bag et al., 2021). As such, the agricultural sector is extensively utilising drones within its 
operations for aerial observations, sensing purposes, as well as, spraying pesticides (Ayamga 
et al. 2021). Moreover, Liu et al. (2023) recently found that large scale agricultural producers 
in China preferred drone services for pesticide reduction. From an agricultural supply chain 
perspective, most emerging technology applications are still at the nascent stage and require 
further exploration.  

 

 

 

 

 

 

 

 

 

 

 

Pesticide hazard  

Pollution  

Lack of accurate predictions for 

seasonal output  

Plant disease  

Seeding accuracy 

Stakeholders’ adoption 

intentions  

H2 

H3 

H4 

H5 

H7 

H8 

H9 

H11 Workers’ health and safety 

H10 

H6 

Drone application  H1 



11 
 

While human expertise has been touted as pertinent in enhancing technological models, there 
are however limited studies on human-machine collaborative dynamics in enhancing precise 
application of pesticide. The study places emphases on these dynamics for cleaner 
production, pesticide hazards reduction and increased agricultural efficiency.  As such, if 
human expertise is used in conjunction with efficient and accurate drones, pesticide 
application would be enhanced thus reducing hazards. It is therefore argued that I5.0 drones 
offers user-preferred manufacturing solutions, hence the following hypothesis is put forward: 

 Hypothesis 1. The use of I5.0 drones will significantly reduce pesticide hazards. 

2.4.2 The mediating links between pesticide hazards and stakeholders' 
intention to use I5.0 drones 

Agriculture production is negatively impacted by several issues, including plant pests and 
using pesticides is one of the most promising ways to tackle this issue (Rojas et al., 2022). 
The frequency and mode of employing chemical pesticides has raised concerns for individuals 
and governments (Vasseghian et al. 2021). Although pesticides are frequently employed to 
safeguard agricultural production and fulfil global food demand, they are also pervasive 
environmental pollutants (Alshemmari et al. 2021; Tang et al. 2021). As such precise or 
reduced pesticide application may positively impact the environment. Diendéré et al. (2018) 
studied the interactions between stakeholders’ beliefs relating to water pollution and pesticide 
use, revealing that they were less inclined to use pesticides when they understood the impact 
on water degradation. A recent study has shown that drone-assisted deliveries can reduces 
carbon emissions and overall costs (Meng et al. 2023). The sustainability model by Mahroof 
et al. (2021) suggests that addressing pesticide hazards will address the underlying 
agricultural supply chain issues and thus stakeholders may be inclined to use I5.0 drones. It 
implies that collaborative efforts of human expertise and machine accuracy if used to mitigate 
hazards caused by using pesticides, may reduce pollution. This entails understanding when 
and how to precisely use drones for pesticide applications. As such we propose that: 

Hypothesis 2. Pesticide hazard reduction using I5.0 drones significantly influences 
pollution reduction for cleaner production. 

 

Davidson et al. (2022) outline that precision agriculture has provided greater access of data 
to farmers and that aerial crop imagery can assist in estimating vegetation indices and 
boosting efficiency. Perz and Wronowski (2019) relate how aerial measurements can assist 
in increasing yields and improving the condition and efficiency of farms. Similarly, Mendoza et 
al. (2021) posit how data collected through drones allows farmers to optimize their use of water 
or chemicals to boost yield, which ultimately will help increase their net profit. Jensen et al. 
(2021) also reveal the predictive power of regression models trained on drone imagery, used 
within fields to predict infestations of annual grass weeds in the late growth stages of cereals. 
In addition, Herrmann et al. (2019) highlight how drones allow farmers to accurately predict 
yield. Spectral models can also differentiate between development stages and irrigation 
treatments, thus emphasising the predictive abilities to utilise drones in agricultural settings. 
Thus, the following hypothesis is put forward: 

Hypothesis 3. The application of pesticides through precision I5.0 drones will 
increase prediction accuracy. 

The relationship between pesticide hazard reduction and plant diseases has been established 
in the literature. It depicts that plant disease will be eliminated if pesticide hazards are curbed 
and that by automating the plant disease detection process, losses in yield can be prevented 
(Chin et al. 2023). Many studies have examined the potential of I4.0 applications in minimising 
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plant diseases or their earlier detection (Khattab et al., 2019). Similarly, Stella et al. (2017) 
highlights the importance of such applications to optimise pesticides, particularly for the future 
of farming practices. Khanal et al. (2017) used hyperspectral sensing to monitor crop stresses, 
diseases, and irrigation stress. Although studies have examined how diseases and crop health 
can be monitored through sensory techniques (Spalević et al., 2018), drones have unlocked 
even more opportunities for plant disease management (Mahroof et al., 2021). A thorough 
understanding of the plant, the surrounding conditions, and the common illnesses or other 
issues that the plant is prone to is pertinent in plant disease management. A false diagnosis 
might result in the overuse of pesticides, a waste of resources in terms of time and money, 
and a plant's ongoing deterioration if such information is not provided. Therefore, it is argued 
that collaborative human-machine expertise in plant disease management would contribute to 
precise application of pesticide hazard which in turn mitigate plant disease. As such it is 
proposed that: 

Hypothesis 4. The effective and precise application of pesticides using I5.0 drones 
will significantly impact plant disease. 

According to Huang et al. (2021) having a higher awareness of the harms of pesticides to the 
ecological environment lowers the possibility of its overuse. Thus, when guiding farmers to 
use new agricultural technologies, disseminating information to those who have adopted such 
technologies is imperative (Gao et al. 2020). The application of pesticides not only assists in 
eradicating harmful microorganisms, but it can also be counter-productive, killing beneficial 
microorganisms and vertebrates, thus disrupting the seeding process (Liu et al. 2023). As well 
as causing ecological damage, pesticides have been shown to negatively impact sales and 
quality of yields (Xie et al., 2019). Hence, the utilisation of precision treatment to overcome 
the disease of plants, thus impacting revenues raised through the cultivation of plants and 
crops, may influence stakeholders’ intention to use precision technologies. Moreover, the 
spraying capabilities of drones can offer precision agricultural solutions, from precision use of 
pesticides through to accurate aerial seeding (Liu et al. 2023). Therefore, the following 
hypothesis is put forward:  

Hypothesis 5. The application of pesticides through precision I5.0 drones will 
increase seeding accuracy. 

Although pesticides contribute to food security, they are considered detrimental to workers 
health and are to blame for acute illnesses in populations (Ngwoi et al., 2016). Pesticide issues 
on workers are generally due to incorrect and poor application of pesticides (Kumar et al. 
2014). Xu et al. (2021) discusses the potential of I5.0 through augmenting human values and 
approach in building resilient manufacturing systems and supply chains. The emphasis is on 
human-robot collaboration where human and machines can work together to optimise systems 
operations (Leng et al., 2021). It extends beyond programming the drones for pesticides use 
on farmlands to understand areas where health and safety may be breached. It requires the 
intervention of human expertise. Moreover, studies highlight the role of drones in reducing 
health and safety challenges. For instance, Roldán-Gómez et al. (2021) found that drone 
swarms can be used to improve firefighters’ efficiency and their safety.  Conversely, in the 
context of farming operations, if workers use I5.0 drones to enhance precision application of 
pesticides, their health and safety challenges may also be minimised. Therefore, the use of 
I5.0 drones may reduce pesticide hazards and in turn mitigate workers health and safety 
challenges. Accordingly, the following hypothesis is put forward:  

Hypothesis 6. The precise application of pesticides hazards using I5.0 drones will 
reduce workers’ health and safety challenges. 

It is reported that farmers exposed to a large quantity of information on agriculture safety and 
agricultural pollution can induce emotional resonance and crisis awareness, stimulate their 
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sense of responsibility, and form awareness of green production (Kansiime et al., 2019). 
Moreover, studies have shown that pesticide application and fertiliser technologies affect 
stakeholders’ production and investment behaviours. According to Zhao et al. (2020), 
stakeholders’ awareness of food safety and agricultural pollution can ultimately impact and 
change their agricultural practices. In adopting the framework set out by Mahroof et al. (2021) 
it can be argued that pesticide hazard reduction may act as a mediator between pollution 
reduction and stakeholders’ intention to use I5.0 drones. It demonstrates that if precision 
pesticide application can accurately reduce pollution, then stakeholders in the agricultural 
supply chain would be more inclined to use I5.0 drones. Thus, the following hypothesis is put 
forward:  

Hypothesis 7. Pollution reduction through increased precise pesticide application 
increase stakeholders’ intention to use I5.0. 

Research reported that the motivation to adopt new technology is heavily influenced by it 
perceive usefulness and perceived ease of use (Ali et al, 2021). Agricultural stakeholders who 
lack an understanding of I5.0 technology will be less likely to adopt the technology, despite its 
usefulness. Tang et al. (2021) outlines the use of pesticides conflicts with UN Sustainable 
Development Goals (e.g. SD3, good health, SDG 6, clean water, SDG 15, protection of life on 
land) and contributes to the loss of biodiversity (Singh et al, 2023). In spite of these negative 
connotations, Strange et al. (2022) argue that pesticide use is expected to increase to help 
attain food security (SDG 2), in response to the global food crisis. Drone precision in 
agriculture is not only able to reduce the use of pesticides, but has the potential to increase 
yields, through healthier crops and cost optimisation (Mahroof et al. 2021). A lack of accurate 
yield forecasts can lead to inefficient allocation of resources, such as labour, tools as well as 
transportation. However, machine learning through I5.0 drones equipped with RGB (red, 
green, blue) cameras can assist in offering more precise yield predictions (Chen et al. 2019). 
Ali et al. (2021) also highlight the ability of drones to expedite agricultural processes, while 
being accurate and cost efficient, can garner interest in its adoption. Therefore, we argue that: 

Hypothesis 8. The significant increase in prediction accuracy through efficient and 
precise pesticide application will increase stakeholders’ intention to use I5.0. 

Plant diseases have adverse effects on both the quantity and quality of agricultural products, 
posing a threat to food safety (Hofmann et al., 2023). These harmful impacts lead to financial 
losses in crucial production sectors that are especially consequential for emerging economies, 
as the manual examination by specialised experts is not only time-consuming but also costly 
(Chin et al. 2023). Consequently, automating plant disease detection such as blight and 
fungus using Color-infrared (CIR) images, and applying treatment based on machine learning 
algorithms through the use of drones appears as a viable method to mitigate yield loss risks 
effectively (Devi and Priya, 2021; Sinha, 2020). Moreover, Liu et al (2018) also found that 
agricultural actors are likely to adopt new practices if it leads to increased profits. The precise 
treatment of plant diseases, leads to increased and healthier yield, thus leading to profitability. 
Therefore, we therefore propose that:  

Hypothesis 9. Precision treatment of plant disease using I5.0 drones facilitates 
stakeholders’ intention to adopt the new technology. 

Zuo et al. (2021) found that tangible benefits can assist with the uptake of drones in farming 
operations. Mohan et al. (2021) reveal spraying mechanisms on drones can offer practical and 
tangible benefits to yield, by helping initial vegetation growth periods. Moreover, Yawson and 
Frimpong-Wiafe (2018) highlighted how aerial data captured from drones can assist crop 
inventories conduction and yield estimates. A plethora of studies have also outlined the role 
of drones in accurately facilitating seeding processes within agricultural settings. For instance, 
Wang et al (2022) posit how drones can successfully and stably plant seeds into the soil 
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through sow seed capsules, whilst Liu et al (2023), outline how modern drones have the 
capability to fire seeds into the soil for plantation purposes. Therefore, drones, along with 
image processing, can optimise management and assist with breeding purposes (Gnädinger 
and Schmidhalter 2017). Accordingly, the following hypothesis is put forward: 

Hypothesis 10. Seeding accuracy facilitated by precise drone application increases 
stakeholders’ intention to use I5.0 drones. 

The agricultural sustainability model by Mahroof et al. (2021) also highlights the link between 
workers’ health and safety challenges and stakeholders’ intention to use I5.0 drones as 
hierarchical. The debate here is that if the challenges workers face whilst executing farming 
operations is adequately addressed using I5.0 drones, then the intention to use this technology 
may increase. It stems from the role of drones being perceptive and informed about workers 
desires and aiding in the decision-making process to addressing them (Nahavandi, 2019). 
Several studies have examined the role of I4.0 in tackling workers health and safety 
challenges (Trivelli et al., 2019; Bernhardt et al., 2021). However, these studies consider 
combining manual and automotive processes in addressing challenges. It depicts the absence 
of trust when using autonomous technology. In this study we argue that the collaborative 
relationship between humans and machines through I5.0 drones would increase farming 
operations efficiency including tackling workers challenges especially pesticide hazards. It in 
turn will motivate stakeholders in their intention to use I5.0 drones. Hence, the following 
hypothesis is put forward: 

Hypothesis 11. Workers’ health and safety increases agricultural stakeholders’ 
intention to use I5.0 drone.  

3.0 Research methods 

Dora et al. (2020) outlines the need for more studies to evaluate the interaction between 
different stakeholders in the food chain including upstream stakeholders, such as farmers. As 
such, this study aimed to examine the determinants of I5.0 drones’ adoption in the food supply 
chain in Nigeria using a sustainability model for cleaner production. Data was gathered using 
survey questionnaires administered in English to achieve the research objectives. All items of 
the constructs were measured using a 7- point Likert scale with “1” indicating “strongly 
disagree” and “7” indicating “strongly agree.” The questionnaire was divided into two parts.  

3.1. Developing constructs 

The constructs used in this study were generated from existing literature and in line with the 
Mahroof et al. (2021) framework. Eight constructs were adopted from Silva et al. (2011), Tey 
et al. (2012) and Barnes et al., (2019) to measure precision agricultural techniques (PAT), in 
this case, drone application. The responses included ‘Drones will lead to lower environmental 
impact’ ‘Drones will lead to a higher yield’. Constructs were adapted from Lithourgidis et al. 
(2016) to measure precise and effective pesticide application on a 3-item scale. Sample items 
included ‘I believe pesticides affect the environment’ and I use the product with the frequency 
indicated on the label’. 
 
Items taken from Bagheri et al (2019), were used to measure plant disease reduction. Sample 
items included ‘I use chemical as well as non-chemical methods to reverse crop disease and 
‘The current methods used are effective in protecting crops. Workers’ health and safety 
challenges were also a construct used to measure stakeholders’ intention towards adopting 
I5.0 drones. Thus, lower workers’ health and safety challenges through drones’ application 
compatibility increased stakeholders’ intention. A 5–item scale adapted from Román-Muñiz et 
al. (2006) and Lunner-Kolstrup and Ssali (2016) measured workers’ health and safety. The 
cross loadings and Cronbach item values suggested the elimination of variables. As such in 
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this study, a two-item scale was used. The sample items included ‘I have experienced skin-
related problems (such as rash, itching, discolouration) from work during the past 12 months 
and ‘I have experienced skin-related problems (such as rash, itching, discolouration) from 
work during the past 12 months.  
 
Precision and effective pesticide application has also been suggested to increase predictions 
accuracy. A 4-item scale from Liu and Huang (2013) was employed to measure the predictions 
accuracy construct. The items included ‘if I spray less, my income will be reduced’, ‘if I use 
pesticides, this leads me to a favourable result, i.e., increased production’ and ‘if I use 
pesticide spraying, my farm revenue will sustain’.  
 
Pollution reduction was also a defining construct in measuring drone compatibility and 
stakeholders’ intention to use. A five-item scale adapted from Pan et al. (2016) was used to 
measure pollution reduction. Three of these items were dropped due to failure to meet the 
required Cronbach and AVE 0.60 thresholds. The sample items were ‘My farming methods 
will not harm the environment’ and ‘I am willing to treat pollution. Thus, the effective use of 
drones through efficient pesticide application will reduce pollution. To measure stakeholders' 
intention to use I5.0 drones, an eight-item scale was adopted Yamano et al., (2015) and 
Bagheri et al. (2019). The items were measured on a five-point Likert scale, where one 
indicated ‘strongly disagree’ and five ‘strongly agree’. A summary of our constructs’ 
development is presented in Appendix A. 
 

3.2. Data Collection  

The empirical context of this study is Nigeria’s food supply chain due to the prominent level of 
agricultural activities in the country and its classification as a developing economy (World 
Bank, 2022). Our unit of analysis were focal firms where each participant represented a single 
firm in the supply chain. It was essential that the participants were knowledgeable on the 
decision-making processes of their firms and as such the views provided were representative 
of their focal firms. A questionnaire administered through a web-link survey was used to 
collected data from participant. We piloted the questionnaire with fifteen (15) food supply chain 
experts and 7 academics to ensure the clarity of all measurement items. All identified issues 
including ambiguity, wording and formatting were addressed before administering the 
questionnaire (Saunders et al. 2019). For instance, I5.0 drones was used instead of 
Unmanned Aerial Vehicle (UAV)  and pollution reduction replaced sustainable practices.  
 
3.2.1. Population, sampling techniques and response rate 
 
Since the aim of our study was to evaluate the intention to use Industry 5.0 drones for 
sustainable farming operations, it was pertinent that respondents in charge of the decision 
making process and who understood the phenonmenon under study completed the 
questionnaire. As such, we considered the non-probability sampling technique (snowballing 
and purposive) as suitable (Saunders, 2019). It implied that anybody identified as 
knowledgeable about the researched phenomena was approached to complete the survey.  
 
We approached 950 stakeholders of managerial positions involved in various activities in the 
food supply chain around Nigeria with particular emphasis in the decision-making processes. 
The questionnaire was circulated via a Web survey link in an email.  A detailed information on 
purpose of the study, confidentiality information and a consent form was attached to the 
questionnaire sent through their emails. To facilitate in recruitment, a multi-channel strategy 
was used through industry connections and professional groups. Emails were sent fortnightly 
as reminders to prompt questionnaire completion.  
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The data were collected between January and March 2021. A total of 270 responses were 
completed and returned. However, 264 were considered valid, indicating a response rate of 
27.7%. A response rate between 6-16% is considered valid (Dillman, 2011). Similarly,the total 
number of valid responses is appropriate for the partial least squares structural equation 
modelling (PLS-SEM). Since each respondent represented single firms, the possibility of 
common method biased (CMB) may occur (Podsakoff et al. 2003). We used the Harman’s test 
to check (Harman, 1976; Kock 2017). The results demonstrate the absence of CMB as the 
CMB had a cumulative average variance of 25.51%. 
 
 

3.3. Sample characteristics 

We used a sample of 264 stakeholders in the food supply chain in Nigeria to achieve our 
research objectives. A summary is presented in Table 1. The summary shows that most of the 
stakeholders in our sample were male with over ten years of experience in perishable food 
supply chain farming. A cross-tabulation between age and type of supply chain showed that 
most respondents above 35 years engaged in perishable foods and grains supply chain more 
than any other age group. Also, stakeholders above the age of 36 had more positive  toward 
towards the use of I5.0 drones in agricultural operations. 

Table 1 Demography characteristics of respondents 

Variable Characteristic Frequency Percentage 
(%) 

Gender Male 
Female 

261 
3 

98.9 
1.1 

Education None 
Primary School 
High School 
College 
University 
Others 

2 
102 
129 
21 
9 
1 

0.8 
38.6 
48.9 
8.0 
3.4 
0.4 

Experience (in Years) Less than five years 
6-10 years 
11 or more 

4 
63 
197 

1.5 
23.9 
74.6 

Age (in Years) Younger than 26 
26-35 
36 and over 

65 
56 
143 

24.6 
21.2 
54.2 

Supply Chain Type Animal Husbandry 
Grains 
Mixed Farming 
Seasonal Farming 
Vegetables 
All of the Above 

1 
33 
6 

30 
192 
2 

0.4 
12.5 
2.3 

11.4 
72.7 
0.8 

 

3.4. Data Analysis 

3.4.1. Model measurement assessment 

We examined the constructs of our measurement model using (i) item loadings and composite 
reliability, (ii) discriminant validity (AVE) and (iii) convergent validity. As presented in Table 2, 
the findings establish construct reliability as all the outer loadings, the overall Cronbach alpha 
score, and composite reliability stood above the recommended 0.60 (Bland and Altman, 1997; 
Hair et al., 2017; Vaske et al., 2017). The values for the convergent validity were also above 
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the recommended 0.50 threshold, which suggests that the model used in this study to measure 
was a good fit.  

 

 

 

 

 

                               Table 2 Assessing measurement model. 
Construct/Items Outer 

loadings 
Cronbach’s 

Alpha 

Average 
Variance 
Extract 

Composite Reliability 

Drone Applications 
DA1 
DA2 
DA3 
DA4 
DA5 
DA6 
DA7 
DA8 

 
0.937 
0.861 
0.955 
0.967 
0.971 
0.976 
0.972 
0.964 

0.985 0.904 0.987 

Stakeholders’ 
Intention to use 
SHA1 
SHA10 
SHA2 
SHA3 
SHA4 
SHA5 
SHA6 
SHA7 

 
0.770 
0.704 
0.804 
0.898 
0.868 
0.929 
0.895 
0.895 

0.944 0.720 0.953 

Seeding Accuracy 
SA1 
SA2 
SA3 
SA4 
SA5 

 
0.853 
0.853 
0.893 
0.754 
0.788 

0.866 0.689 0.917 

Predictions 
Accuracy 
PA2 
PA3 
PA4 
PA5 

 
 

0.908 
0.939 
0.940 
0.943 

0.950 0.870 0.964 

Plant Disease 
PD1 
PD2 
PD3 
PD4 
PD5 

 
0.782 
0.789 
0.807 
0.804 
0.717 

0.839 0.609 0.886 

Pesticide Hazard 
PH1 
PH2 
PH4 

 
0.768 
0.774 
0.781 

0.720 0.600 0.818 

Pollution Reduction 
PR3 
PR4 

 
0.991 
0.991 

0.982 0.982 0.991 
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Workers’ Health 
and Safety 
WHS2 
WHS5 

 
 

0.978 
0.977 

0.953 0.955 0.977 

1. The output of SmartPLS3 (PLS-SEM) is based on a research sample. 
2.  AVE = average variance extracted. 
 

3.4.2. Discriminant validity tests 

The discriminant validity was considered using the Fornell-Larcker criterion (1972) to assess 
the model parameters. To measure this, the square root of a construct’s AVE should be lower 
than its highest correlation. The findings are presented in Table 3. 
 
Table 3 Discriminant validity 
Variables PA DA FA PH PD PR SA WHS 

Predictions Accuracy (PA) 0.933        

Drones’ Applications (DA) 0.235 0.951       

Stakeholders’ Intention to Use 
(SHA) 

0.178 0.170 0.849      

Pesticide Hazard (PH) 0.328 0.329 0.301 0.774     

Plant Diseases (PD) 0.416 0.241 0.189 0.585 0.781    

Pollution Reduction (PR) 0.313 0.467 0.106 0.658 0.374 0.991   

Seeding Accuracy (SA) 0.425 0.755 0.126 0.486 0.348 0.607 0.830  

Workers’ Health and Safety 
(WHS) 

0.435 0.472 0.110 0.446 0.404 0.615 0.576 0.977 

[Note: Values across the diagonal in bold font are the square root of AVE] 
 

3.4.3 Quality of model  

The structural model quality was examined using the R2 and the Q2 by Geisser (1974) model 
measurements as presented in Table 4. Pollution reduction (PR) was measured by two 
constructs and had significant R2 and Q2 (0.436 and 0.418). Plant disease (PD) was measured 
using five constructs with R2 and Q2 (0.324 and 0.206).  
 
                      Table 4 Model quality 

Constructs R2 Q2 

Predictions accuracy 0.157 0.092 

Stakeholders’ intention 0.049 0.031 

Pesticide hazard 0.108 0.038 

Plant disease 0.343 0.206 

Pollution reduction  0.436 0.418 

Seeding accuracy 0.304 0.158 

Workers’ health and safety 0.99 0.209 

  

   4.0 Findings  

We analysed the data using partial least square based structural equation models (PLS-SEM). 
The PLS-SEM was used to provide a predictive approach to handle complex models where 
no prior assumptions have been considered (Hair et al., 2019; Sarstedt et al., 2020; Dash and 
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Paul, 2021). In this case, our complex model involves six drivers and challenges of 
sustainability technology adoption. Presented in Figure 3 are the standardised estimates from 
the SEM. The results of the hypotheses are presented in Table 5. First, our findings confirmed 
that the use of I5.0 drones increased the effectiveness and precision application of pesticides 
supporting H1 (β = 0.302, p>0.000). We found that effective pesticide application using I5.0 
drones had positive and significant effect on PA (β = 0.327, p>0.000), SA (β = 0.459, p>0.000), 
PD (β = 0.590, p>0.000) and PR (β = 0.238, p>0.000) The findings also indicated positive and 
statistically significant relationship between PH and WHS(β = 0.301; p>0.000), denoting the 
support for H2-H6. We found statistically insignificant relationships between SHA and PR, PA, 
SA and WHS. Hence H7, H8, H10 and H11 were not supported. A positive and statistically 
significant link between PD and SHA (β = 0.127, p>0.005, supports H9. The findings indicate 
that although reduced pesticide hazards mitigated sustainability challenges, they did not 
influence stakeholders’ intention to adopt I5.0 drones. A summary of the hypothesis tested is 
presented in Table 5. A summary of the structural path analysis is presented in Appendix B. 

 

The indirect effect of I5.0 drones and sustainability challenges indicate positive and statistically 
significant relationships as presented in Table 6. It implies that I5.0 drones have the capacity 
to also directly address sustainability issues of farming operations.   

 
                Table 5 Structural path for identified constructs. 

Path coefficients Direct 
effect  

T value  Total 
effect  

T value  

Drones’ applications → Pesticide hazard  0.302  5.759**  0.329  6.430***  

Pesticide hazard → Pollution  0.238  4.292**  0.658  16.091***  

Pesticide hazard → Prediction accuracy  0.327  6.10**  0.328  5.980***  

Pesticide hazard → Plant diseases  0.590  13.301**  0.585  12.605****  

Pesticide hazard → Seeding accuracy  0.459  10.878**  0.486  12.083***  

Pesticide hazard → Workers’ health and safety 0.301 5.435*** 0.300 5.435*** 

Pollution → Stakeholders’ intention 0.120  2.053*  0.011  0.123  

Prediction accuracy → Stakeholders’ intention  0.069  0.819  0.113  1.528  

Plant diseases → Stakeholders’ intention 0.127  2.021**  0.133  2.300**  

Seeding accuracy → Stakeholders’ intention 0.106  1.358  0.037  0.353  

Workers’ health and safety → Stakeholders’ 
intention 

0.038  0.351  -0.022  0.209 

1. Significance **p < .01, *p < .05. 
2. Results of bootstrapping 500 replications PLS-SEM based on N=264 
 
 
Table 6 Indirect effects of drone application 

Structural Path Indirect effect T statistics  

Drones Application -> Plant diseases 0.193 5.583*** 

Drones Application -> Pollution reduction 0.218 5.306*** 

Drones Application -> Prediction accuracy 0.108 3.837*** 

Drones Application -> Seeding accuracy 0.182 4.76*** 

Drones Application -> Stakeholders' intention 0.043 2.339** 

Drones Application -> Workers' health and safety 0.148 4.223*** 

Pesticide Hazard -> Stakeholders' intention 0.130 2.67** 
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The specific structural path to increase stakeholders’ intention toward the I5.0 application was 
analysed. We found the path for Drones’ applications Pesticide hazard → Plant diseases → 
Stakeholders’ intention to use statistically significant (β = 0.021, p<0.10). Thus, Stakeholders’ 
intention towards I5.0 drones is largely influenced by efficient and precise pesticide application 
and plant disease reduction. We also found the DA→ PH →WHS path statistically significant 
(β =0.091, p< 0.01) 0.005). It implies that drone applications will reduce workers’ health and 
safety through pesticide hazard reduction.  
 
 

Table 7 Hypothesis testing 

No Hypothesis Findings 

H1 The use of I5.0 drones will significantly reduce pesticide hazards Supported 

H2  Pesticide hazard reduction using I5.0 drones significantly 
influences pollution reduction for cleaner production 

Supported 

H3 The application of pesticides through precision I5.0 drones will 
increase prediction accuracy 

Supported 

H4 The effective and precise application of pesticides using I5.0 drones 
will significantly impact plant disease. 

Supported 

H5 The application of pesticides through precision I5.0 drones 
will increase seeding accuracy. 

Supported 

H6 The precise application of pesticides hazards using I5.0 drones will 
reduce workers’ health and safety challenges. 

 
Supported 

H7 Pollution reduction through increased precise pesticide application 
increase stakeholders’ intention to use I5.0  

Not Supported 

H8 The significant increase in prediction accuracy through efficient and 
precise pesticide application will increase stakeholders’ intention to 
use I5.0. 

Not supported 
 

H9 Precision treatment of plant disease using I5.0 drones facilitates 
stakeholders’ intention to adopt the new technology 

 
Supported 

H10  Seeding accuracy facilitated by precise drone application 
increases stakeholders’ intention to use I5.0 drones. 

Not supported 

H11 Workers’ health and safety increases agricultural stakeholders’ 
intention to use I5.0 drone. 

Not supported 

 

PLS-SEM, a variance-based structural equation modelling, was used to test the model. 
Analysis was calculated using complete Bootstrapping with 5000 replications. 
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Figure 3: Structural path model 

In Table 7, we present the results of the performance map analysis. This analysis aims to rank 
factors that influence Stakeholders’ adoption of I5.0 drones. Our findings rank predictions 
accuracy as the most critical factor, followed by drone application, pesticide hazard, and plant 
diseases. We find pollution, seed accuracy, and workers’ health and safety the least factors 
influencing stakeholders’ adoption of I5.0 drones. These are in line with our hypothesis testing.  

                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8 Latent Variable Ranking 
Latent Variables LV Performance 

Predictions Accuracy 74.325 
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Drone’s applications 86.481 

Stakeholders’ intention to use 89.379 

Pesticide hazard 54.389 

Plant diseases 59.878 

Pollution 69.367 

Seeding accuracy 78.607 

Workers’ Health and Safety 68.034 

5.0 Discussions on the adoption of I5.0 drones for cleaner food production 

Our findings advocate for the use of I5.0 in increasing agricultural operational performance 
and environmental sustainability by reducing plant diseases. However, we found that while 
I5.0 does reduce health and safety challenges, this was not an influencing factor for the uptake 
of I5.0 by supply chain stakeholders. The logical explanation suggests that emerging 
technologies such as I5.0 are squarely focused on improving operations processes with less 
focus on people in operations. 

RQ1. What factors influence food supply chain stakeholders to adopt I5.0 drones 
for cleaner production? 

In this study, we were concerned with the factors that propelled food supply chain stakeholders 
to use I5.0 drones for cleaner production. With the use of an augmented parsimonious model 
developed by Mahroof et al., (2021), our findings highlight factors that influence I5.0 adoption 
and their implications. First, the analysed data showed a positive and statistically significant 
relationship between pesticide hazard reduction and the use of I5.0 drones. A reduction in 
pesticide hazards in turn reduced plant diseases and increased prediction and seeding 
accuracy. It therefore suggests a hierarchical link between I5.0 drones and food production 
operations where stakeholders’ intention to adopt I5.0 technology begins with the contribution 
of drone use to pesticide hazard reduction.   

We also found that stakeholders were not necessarily concerned with pollution reduction and, 
as such, may not be motivated to adopt I5.0 technologies to address these issues. It highlights 
stakeholders' environmental behaviour and the poor understanding of factors capable of 
mitigating pollution in an emerging economy like Nigeria. However, some studies have 
suggested that understanding identities, behavioural beliefs; agency; networks and 
relationships; and social norms may propel farmers' intention to pollution reduction through 
the precise application (Wang et al., 2019). Notwithstanding, policies need to be in place to 
educate farmers on environmental behaviours. Therefore, our analysis reveals pollution 
reduction through increased precise pesticide application does not increase farmers' intention 
to use I5.0. 

However, although food supply chain stakeholders are more concerned about the precise 
application (pesticide hazard reduction, seeding accuracy) of drones in agricultural operations, 
these activities invariable enhances cleaner production. As such, we provide empirical 
evidence to support the contributions of I5.0 in cleaner production. It is particularly relevant as 
over 16% of climate change issues have been attributed to land degradation caused by 
pesticide application (Pinguet, 2020). Through precise application the land is preserved 
without excesses encroaching on the environment and plant diseases are curbed (Khattab et 
al., 2019). Thus, a reduction of pesticide hazards through precise application positively 
impacts the environment (Balafoutis et al. 2017). These findings are in consonance with the 
study of Sharma and Arya (2022), who found that the use of I5.0 UAV contributed to improving 
air quality. 

Further, the findings also indicated that the absence of a relationship between stakeholders’ 
intention to adopting I5.0 drones and workers' health and safety challenges. It implied that 
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although stakeholders considered I5.0 drones beneficial to farm operations, they were less 
inclined to adopt drone use if the specific purpose were to address workers health and safety 
challenges. It supports existing literature of stakeholders’ concern about workers' health and 
safety challenges. For instance, Lotfi et al. (2021) found that workers' safety is often neglected 
in supply efficiency. Alsamawi et al. (2017) also provided evidence of hidden workers' 
challenges along supply chains that have been overlooked. However, I5.0 use tackles this 
challenge as it emphasises collaborative operations between robots and human (Ivanov, 
2023). Due to the increased small footprint and adaptability of drones, I5.0 drones can be used 
to make working environments safe thus addressing workers’ health and safety challenges 
(Grobbelaar et al., 2021).  

RQ2. Does the adoption of I5.0 drones tackle food supply chain challenges? 

Several challenges to production in the food supply chain have been identified to include 
pesticide hazard, pollution reduction, seeding accuracy, plant diseases, accurate prediction 
and workers health and safety (Mahroof et al., 2021). Our findings indicated I5.0 drones has 
the capacity to tackle these challenges and in turn support sustainable supply chain 
operations. For instance, we found that the use of I5.0 drones contributed to reducing pesticide 
hazards and plant diseases. It in turn enhances agriculture operations and food production. It 
implies that the use of I5.0 drones enhances agricultural production, facilitates the flow of 
produce in the supply chain by reducing hazards caused by pesticides and promotes cleaner 
production. The findings also indicate that I5.0 has the potential to reduce worker’s health and 
safety, an issue which is extensively highlighted within agricultural research. 

Thus, the precise application of pesticides reduces associated hazards such as pollution and 
plant diseases, which invariably has a ripple effect on other aspects of agricultural production.  
Our findings are in line with existing literature which argues that I5.0 enhances production 
systems (Bag et al., 2021). In this case food production, which could help alleviate issues with 
food shortages. For instance, Liaghat and Balasundram (2010) and Wang et al. (2018) 
showed that the use of drones improved crop yield through precise application of pesticides. 
Similarly, Guruswamy et al., (2022) showed that the vulnerability of food systems can be 
mitigated using I5.0 drones.  

5.1 Theoretical implications 

For researchers interested in gaining valuable insights into the understanding of I5.0 drones 
use for cleaner agricultural production, this study and its findings offer several theoretical 
implications. The first substantial contribution is that it is one of the first studies to adapt and 
test the proposed sustainability model by Mahroof et al (2021). It does this by demonstrating 
the various stages influencing stakeholders' intention to use I5.0 drones. Previous research 
(Bag et al. 2021; Kumar et al. 2022) have not focused on the capacity of the human dimension 
in facilitating sustainable practices in farming operations. 

 In this regard, we showed that the intention to use industry I5.0 drones began from the 
collaborative ability to ensure precise application of pesticide for hazard reduction which in 
turn ensures seeding accuracy, pollution reduction, workers health and safety challenges and 
prediction accuracy. The research thus extends the human-AI discourse by validating the 
Mahroof et al. (2021) sustainability model and demonstrating the importance of drones in 
facilitating sustainable agriculture for food security. Hence, the study helps to provide insights 
into human factors within the paradigm of I5.0. Previous literature within the paradigm of I4.0 
focused largely on the automation and technical aspects and overlooked human factors and 
those who were tasked with adopting the technology.  

Industry experts and I5.0 drone operators have always believed that drones’ ability to 
overcome a host of long-standing agricultural challenges naturally influences the stakeholders’ 
intention towards drones, increasing the uptake of I5.0 drones in agriculture. This study tests 
whether I5.0 drone-led solutions to the existing, overarching agricultural challenges previously 
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identified in a study by Mahroof et al. (2021) could influence the uptake of I5.0 drones by 
farmers in the context of an emerging economy. The novel contribution of this model is 
underpinned by its discovery that these solutions do not necessarily influence the 
stakeholders. Hence, not all solutions to agricultural challenges that can be solved by I5.0 
drones directly influence the stakeholder’s intention or motivation to adopt drones in their 
farming activities. This study reveals a statistically significant influence of factors determining 
the stakeholders’ intention towards using I5.0 drones.  

Unlike what was suggested in many studies, the only drone led solutions to agricultural 
challenges that will increase the stakeholders’ drone adoption are linked to factors that affect 
yield generation. Stakeholders are prone to adopt drones in a situation where drone usage 
helps to enhance plant health, which in turn, results in economical use of resources and 
increased crop production. The findings reveal that the ability to minimise plant disease is a 
critical factor in the adoption of I5.0 drones by agricultural stakeholders in this context, given 
severe constraints in production outputs resulting from poor crop quality, thus ultimately 
harming their yield.  

Plant diseases have always been a tough challenge for agricultural stakeholders, especially 
when the extreme climate has already challenged the yield. These factors, their inter-
relationship and criticality are mapped in Figure 3. The model suggests that environmental 
sustainability (i.e. environmental pollution), workers’ health, prediction accuracy and safety are 
the stakeholders’ most minor concerns, signposting the lack of awareness of those realms 
within this economic region, also alluding to the lack of planning undertaken by agricultural 
stakeholders. It is proposed that the same situation applies to the agricultural stakeholders in 
similar contexts of emerging economy nations, where monetary incentives primarily drive 
actions – hence healthy crops, translating to increased yields take priority over other outcomes 
regarding drone usage in agricultural activities.  

The second main contribution of our findings is the negative link between pollution control and 
stakeholders' intention to use I5.0 drones. It contradicts existing studies which suggests that 
demonstrating the ability of a technology to reduce pollution in farming operations increases 
stakeholders' intention to use it (Wang et al. 2019). It thus highlights that in developing 
economies, the intention to use a human centric technology such as I5.0 drones is more 
focused on treating plant diseases though precise application of pesticides. Further studies 
should be carried out to provide possible explanations.  

In addition, our model highlights that in developing economies the study helps to provide 
insights into human factors within the paradigm of I5.0. Previous literature within the paradigm 
of I4.0 focused largely on the automation and technical aspects and overlooked human factors 
and those who were tasked with adopting the technology. Therefore, this research provides 
empirical insights into the human centric perspective and contributes to a growing body of I5.0 
literature and responds to the calls of Chin (2021), Colla et al. (2021) and Panagou et al. 
(2023), by placing focus on human-centricity and empirically exploring adoption of I5.0 through 
its human counterparts. Thus, I5.0 drones can improve sustainable agriculture through the 
practice of precision agriculture generated from real-time data of crop and soil moisture 
conditions. From the findings we can infer that the data generated by I5.0 drones can inform 
decision-making such as planting schedules, precision pesticide application and pollution 
reduction. This can provide valuable guidance for sustainable farming practices and more 
resilient Agri-Supply chains.   

Further, the empirical testing the sustainability model demonstrates an approach to 
understanding how I5.0 drones can be used in ensuring sustainable operations in agricultural 
supply chain. However, the unsupported hypothesised relationships (Pollution reduction, 
seeding accuracy, prediction accuracy and workers health and safety challenges may indicate 
the need to address other factors including financial and cultural approach. As such adapting 
the model to accommodate different economies may be beneficial. 
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5.2 Practical implications  

This research explored supply chain stakeholders’ intention to adopt I5.0 drones based on a 
sample of 264 farmers. A questionnaire developed from the extant literature was distributed 
across farms in Nigeria, with a majority of stakeholders highlighting their willingness to adopt 
the drones to minimise plant disease. However, to maximise the benefits of I5.0 drones, there 
is a need for more research and awareness of the benefits of such technologies whilst also 
educating farmers on health and safety, how it can assist in proactive planning and better 
prediction accuracy and in particular on the benefits of using I5.0 for precision pesticides, 
which can minimise pollution and other associated adverse effects resulting from its excessive 
use. These key factors were not seen as influencing factors for the stakeholders. Accordingly, 
the following recommendations are proposed: 

Firstly, there is a need for the Federal Ministry of Agriculture and Rural Development to 
commission further research about the economic and societal benefits for Nigeria associated 
with plant diseases across agricultural settings. This factor was seen to influence adoption 
intention. Yet, limited research has been conducted on the economic and ecological benefits 
resulting from reduced pollution (pesticides) and plant disease for Nigeria’s agriculture 
production. Moreover, further evidence on the broader benefits of increased seeding accuracy 
and the impact of having better yield predictions would provide further impetus for adopting 
I5.0 drones among supply chain stakeholders. As this research has indicated these as 
influencing factors towards adopting I5.0 drones, more effort should be placed to understand 
how this can be operationalised within the farms. 

Secondly, this research revealed that farmers were not interested in adopting I5.0 drones, 
despite acknowledging it may assist with health and safety-related challenges. Based on the 
findings, this can be attributed to the fact that the farmers fail to see the importance of health 
and safety and see economic benefits as priority. Moreover, the findings also indicated that 
despite acknowledging the role of I5.0 drones in offering more precise and accurate pesticides 
application, farmers failed to acknowledge the connection between the precision application 
and personal health and safety. Thus, it is proposed that the Federal Ministry of Agriculture & 
Rural Development and other agricultural agencies disseminate factual evidence regarding 
the adverse health effects of pesticide exposure. The findings also suggest that the 
stakeholders appreciate the role of I5.0 drones in reducing pollution, yet this was insufficient 
in influencing their uptake of drones. Therefore, more information needs to be shared with 
farmers to be aware of the practical economic and societal benefits of reducing pollution. 

Thirdly, many farmers in developing and emerging countries face technology and credit market 
inadequacies, leading to financial constraints when adopting new forms of technology. Hence, 
the government should bolster research and development spending across agriculture to offer 
training and make the uptake of I5.0 drones accessible and affordable to farmers. Handheld 
sprayers are one of the most common methods of applying pesticides and are considerably 
cheaper and require little to no training. In other words, without government support schemes 
and financial support, the uptake of such innovative solutions in the form of I5.0 will always be 
impractical and too costly to implement.  

6.0 Conclusion, limitations, and future research 

Mendoza et al. (2021) have previously highlighted that the contradicting views and 
perspectives surrounding drones has slowed the rate of adoption and integration within public, 
governmental and commercial settings. Accordingly, this research set out to explore factors 
that influence the adoption of I5.0 drones among supply chain stakeholders from an emerging 
economy. In doing so, this research reveals the significance of  utilising I5.0 drones for the 
precision treatment of plant disease as a critical factor in influencing the uptake of I5.0 drones 
among Nigerian supply chain stakeholders. Moreover, the research revealed how health and 
safety, and pollution reduction were not influencing factors. These findings offer a potentially 
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vital precedent for agricultural stakeholders, such as farmers, policymakers, and food 
producers in emerging economies pursuing smart farming and intelligent systems for 
agricultural operations. The findings from this research can inform food producers and 
policymakers of the opportunities and challenges of implementing I5.0 drones. 

In conclusion, the agricultural practice requires technological advancement in all spheres of 
its operations. However, human capital remains crucial in introducing and adopting technology 
in this context. Nigeria remains Africa’s most populous country, with 30% of its population 
engaged in agricultural-related activities (UNICEF 2018). As mentioned earlier, there may be 
issues with technology adoption if the aspects of human capital development are neglected. 
Human capital has enormous potential in Nigeria; a careful integration of technology with due 
consideration of the human factor will be necessary for its advancement within this context. 

Despite the valuable contributions resulting from this research, we must also acknowledge the 
limitations. Firstly, the sample size for this research was 264; thus, to validate the robustness 
of the results even further, this research should be replicated with a more significant and more 
representative sample.  

In designing the sustainability model used in this study, we did not consider various variables 
including perceived usefulness, perceived ease of use, trust, compatibility, and other 
behavioural factors. As such, future studies should augment the model to include these 
variables. Moreover, while the purpose of the study was to explore drone adoption in Nigeria, 
many supply chain stakeholders in developing and emerging countries have limited exposure 
and awareness of drone technologies. It may have influenced their responses to the survey 
questions. Additionally, drone applications in agriculture are in their infancy, regardless of the 
economic status of countries. Therefore, to further validate the findings of this research, it is 
suggested that this research be conducted across other emerging economies and developed 
economies.  
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Appendix A: Defining constructs  
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Items Description Source 

Drones’ application 
DA1 
DA2 
DA3 
DA4 
DA5 
DA6 
DA7 
 
DA8 

 
I5.0 drones will lead to lower environmental impacts. 
I5.0 drones will lead to significant management 
changes. 
I5.0 drones will lead to improvements in crop quality. 
I5.0 drones will lead to a higher yield.  
I5.0 drones will lead to lower production costs.  
I5.0 drones will lead to a higher market share for the 
company. 
I5.0 drones will lead to compliance with regulations 
related to the domestic market. 
I5.0 drones will lead to compliance with regulations 
related to the international market 

Silva et al. (2011); Tey 
et al., (2012); Barnes 
et al., (2019) 

Stakeholder’s intention 
to use 
FA1 
FA2 
FA3 
FA4 
FA5 
FA6 
 
FA7 
 
FA10 
 

 
 
I consider myself a progressive farmer.  
I like to try new agricultural technologies or practices.  
I actively seek new information from others. 
I like new ideas in general.  
Other stakeholders think I am a progressive farmer 
Other stakeholders ask my opinions about agricultural 
technologies.  
Other stakeholders will not object to how I produce rice 
on my fields  
I can adopt new agricultural technologies which are 
profitable. 
 

Yamano et al. 2015 

Seeding accuracy 
SA1 
SA2 
 
SA3 
 
SA4 
SA5 

 
 
Aerial seeding can accelerate seeding process. 
Using a helicopter or plane for aerial seeding is 
expensive. 
Using a plane or helicopter for aerial seeding requires 
large amount of seeds 
Seeding is labour intensive. 
Seeding process needs special skills 

Elliot (2016). 
Diwate et al. (2018) 

Predictions Accuracy  
PA2 
 
PA3 
PA4 
 
PA5 

 
 
If my plants have become pest resistant, I still continue 
to use excessive amounts of pesticides 
If I spray less, my income will be reduced. 
If I use pesticides, this leads me to a favourable result, 
i.e., increased production 
If I use pesticide spraying, my farm revenue will sustain 

Liu and Huang (2013)  

 

Plant disease  
PD1 
 
PD2 
PD3 
 
PD4 
 
PD5 

 
 
 I believe pesticides are harmful to healthy crops (non-
infested by pests)  
I believe pesticides residues contaminate crops.  
I can recognise the most common plant disease in my 
farm 
I use chemical as well as non-chemical methods to 
reverse crop disease  

Bagheri et al (2019) 
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The current methods used are effective in protecting 
crops 

Pesticide hazard  
PH1 
PH2 
 
PH4 

 
 
I apply the rates indicated on the product label.  
I use the product with the frequency indicated on the 
label 
I believe pesticides affect the environment 

Lithourgidis et al. 
(2016) 

Pollution reduction 
PR1 
 
PR2 

 
 
My farming methods will not harm the environment. 
 
 I am willing to treat pollution  

Pan et al. (2016) 

Workers' health and 
safety 
WHS2 
 
 
 
WHS5 

 
 
 
I have experienced skin-related problems (such as rash, 
itching, discoloration) from work during the past 12 
months.  

 
After pesticides and agrochemicals, I experience either 
one or more of the following symptoms; dizziness, 
vomiting, pain and a burning feeling in the face and eyes 
after spraying 

Román-Muñiz et al. 
2006 

 
 
Lunner-Kolstrup and 
Ssali (2016) 
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Appendix B: Structural Path Analysis 

 

Path constructs Effects T value 

Pesticide hazard → Plant diseases → Stakeholders’ intention 0.071 1.924 

Drones' applications → Pesticide hazard →Workers' Health and 
Safety→Stakeholders’ intention 

-0.002 0.168 

Drones' applications → Pesticide hazard → Predictions Accuracy 
→Stakeholders’ intention 

0.007 0.737 

Pesticide hazard → Predictions Accuracy →Stakeholders’ intention 0.023 0.777 

Drones' applications → Pesticide hazard → Seeding accuracy 
→Stakeholders’ intention 

0.005 0.309 

Drones' applications → Pesticide hazard →Workers' Health and Safety 0.091 3.805** 

Drones' applications → Pesticide hazard → Seeding accuracy 0.139 3.992** 

Drones' applications → Pesticide hazard → Pollution →Stakeholders’ 
intention 

0.008 1.084 

Drones' applications → Pesticide hazard → Pollution 0.072 3.237* 

Drones' applications →Workers' Health and Safety →Stakeholders’ 
intention 

-0.007 0.184 

Pesticide hazard →Workers' Health and Safety →Stakeholders’ 
intention 

-0.005 0.179 

Pesticide hazard → Pollution →Stakeholders’ intention 0.025 1.163 

Pesticide hazard → Seeding accuracy →Stakeholders’ intention 0.018 0.339 

Drones' applications → Pesticide hazard → Plant diseases 0.178 5.208** 

Drones' applications → Pesticide hazard → Plant diseases 
→Stakeholders’ intention 

0.021 1.739* 

Drones' applications → Pesticide hazard → Predictions Accuracy 0.099 3.779** 

[Note: Significance: ***p<0.01, **p<0.05, *p<0.10] 

 

 


